zoukankan      html  css  js  c++  java
  • 第六周作业(不完整版)

    2020-04-20 11:39:00

    计算函数曲线与x轴包围的面积

     ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫描述

    计算函数曲线在区间(a,b)与x轴包围的面积,可将这个区域平行于y轴切分成相等宽度的小梯形,每个梯形的面积可近似求出,所有梯形面积的和就是函数曲线与x轴包围的面积,也就是函数在给定区间的积分值,dx越小,梯形近似度越高,计算结果越精确,也就是说区间切分段的越多,结果越精确。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    参考下图,计算函数sin(x)在区间(a,b)与x轴包围的面积,a,b由用户输入,区间切分多少段也由用户输入。

     输入格式

    输入包括两行‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    第一行是由空格分隔的两个实数,代表积分区间‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    第二行是一个正整数,代表切分数量‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

     ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬输出格式

    积分值,结果保留2位小数

     1 import math
     2 a,b = map(eval,input().split(' ')) 
     3 n = eval(input())
     4 dx = abs(b-a)/n
     5 sum=0
     6 for i in range (1,n+1):
     7     dy=abs(math.sin(a)*dx)
     8     a=a+dx
     9     sum=sum+dy
    10 print("{0:.2f}".format(sum))

    注:①第四行dx的计算,应该加上绝对值符号;

           ②sin的计算应该调用math库;

    哥德巴赫猜想

    描述

    数学领域著名的“哥德巴赫猜想”的大致意思是:任何一个大于2的偶数总能表示为两个素数之和。比如:24=5+19,其中5和19都是素数。本实验的任务是设计一个程序,验证20亿以内的偶数都可以分解成两个素数之和。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    输入格式

    输入在一行中给出一个(2, 2 000 000 000]范围内的偶数N。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    输出格式

    在一行中按照格式“N = p + q”输出N的素数分解,其中p ≤ q均为素数。又因为这样的分解不唯一(例如24还可以分解为7+17),要求必须输出所有解中p最小的解。

     1 N = int(input())
     2 p1=''
     3 q1=''
     4 q=0
     5 for p in range(2,(int(N/2)+2)):
     6     q=N-p;
     7     p1="素数"
     8     q1="素数"
     9     for x in range(2,p):
    10         if (p%x)==0:
    11             p1="不是素数"
    12     for y in range(2,q):
    13         if (q%y)==0:
    14             q1="不是素数"
    15     if p1=="素数" and q1=="素数":
    16         print("N = {} + {}".format(p,q))
    17         break

    鸡兔同笼B‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪

    描述

     一个笼子里面关了若干只鸡和兔子(鸡有2只脚,兔子有4只脚,没有例外),已经知道了笼子里面脚的总数feets,则笼子里至少有多少只动物,至多有多少只动物?‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    思路:①如果输入的a为奇数,可知该数据错误,最多、最少返回值都为零;

               ②能被4整除的feets,最大值为a除以2,最小值为a除以4;

               ③能被2整除的feets,最大值为a除以2,最小值为a除以4,再加上1。

     ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪输入格式

    第一行输入一个正整数,表示测试数据的组数n

    接下来的n行,每行一个整数,代表脚的数量‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

     ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬输出格式

    输出包含n行,每行对应一个输入,包含两个正整数,第一个是最少的动物数,第二个是最多的动物数,两个正整数间用一个空格分开

    如果没有满足要求的答案,则输出用空格分隔的两个0

     1 n=eval(input())
     2 for i in range (n):
     3     a=eval(input())
     4     if (a % 2 != 0): 
     5         max=min=0
     6     elif (a % 4) == 0:
     7         max = a / 2 
     8         min = a / 4 
     9     else:
    10         max = a / 2
    11         min = (a /4)+(a%4)/2 
    12     print ("%d %d"%(min,max))

    与7无关的数

     ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬描述

    一个正整数,如果它能被7整除,或者它的十进制表示法中某一位的数字为7,啧称其为7相关的数。

    求所有小鱼n(n < 100)的与7无关的正整数以及他们的平方和。

     

    输入格式

    输入为一个正整数‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    输出格式

    两行‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    第一行为所有与7无关的数,以列表形式输出,逗号分开‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    第二行为他们的平方和

    1 n=int(input())
    2 list=[]
    3 sum=0
    4 for i in range(1,n):
    5     if i%7!=0 and i//10!=7 and i%10!=7:
    6         list.append(i)
    7         sum=sum+i*i
    8 print(list)
    9 print(sum)

    完美立方数

    描述

    费马大定理断言,当整数n > 2时,关于a,b,c的方程a**n = b**n + c**n没有正整数解。

    该定理被提出来后,历经三百多年,经历多人猜想辩证,最终在1995年被英国数学家安德鲁.怀尔斯证明。

    当然,可以找到大于1的4个整数满足完美立方等式:a**3 = b**3 + c**3 + d**3 (例如12**3 = 6**3 + 8**3 + 10**3)

    编写一个程序,对于任意给定的正整数N(N<=100),寻找所有的四元组(a,b,c,d),满足a**3 = b**3 + c**3 + d**3,其中 1 < a,b,c,d <=N‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    输入格式

    正整数N(N <= 100)‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

     ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫输出格式

    按照a的值从小到大,每行输出一个完美立方等式,其中b,c,d按照非降序排列输出。若两个完美立方式中a值相同,则b值小的先输出;在b值相等的情况下,c值小的先输出,在b,c都相等的情况下,d值小的先输出。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‭‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬

    输出格式参考输入输出示例。

    1 N= int(input())
    2 for a in range(2,N+1):
    3     for b in range(2,N+1):
    4         for c in range(b,a):
    5             for d in range(c,a):
    6                 if a**3==b**3+c**3+d**3:
    7                     print("Cube = {},Triple = ({},{},{})" .format(a,b,c,d))
  • 相关阅读:
    00-03.kaliLinux-vi粘贴复制功能配置
    00-02.kaliLinux-配置SSH服务
    00-01.Kali Linux 2020.1修改root用户密码
    Web设计色彩(转载)
    Inno Setup区段之Language篇
    Inno Setup区段之Setup篇
    IE无法获取到input框的值
    Inno Setup之常量篇
    Inno Setup之概念篇
    网络不通排查
  • 原文地址:https://www.cnblogs.com/xugama/p/12736759.html
Copyright © 2011-2022 走看看