- 条件概率:[Pleft( {B|A} ight) = frac{{P(A,B)}}{{P(A)}}]
- 乘法定理:[egin{array}{l}
Pleft( {A,B} ight) = Pleft( {B|A} ight)Pleft( A ight)\
Pleft( {A,B,C} ight) = Pleft( {C|A,B} ight)Pleft( {B|A} ight)Pleft( A ight)
end{array}] - 全概率公式:[Pleft( A ight) = sumlimits_j {Pleft( {A|{B_j}} ight)Pleft( {{B_j}} ight)} ]
- 贝叶斯公式:[Pleft( {{B_i}|A} ight) = frac{{Pleft( {A|{B_i}} ight)Pleft( {{B_i}} ight)}}{{sumlimits_j {Pleft( {A|{B_j}} ight)Pleft( {{B_j}} ight)} }}]
- A,B独立:[Pleft( {A,B} ight) = Pleft( A ight)Pleft( B ight)]
- 概率分布函数与概率密度函数:[egin{array}{l}
Fleft( x ight) = Pleft( {X le x} ight) = int_{ - infty }^x {fleft( t ight)} \
fleft( x ight) = {F^`}left( x ight)
end{array}] - 期望:[Eleft( x ight) = int_{ - infty }^infty {xfleft( x ight)dx} ]
- 方差:[Dleft( X ight) = Eleft{ {{{left[ {X - Eleft( X ight)} ight]}^2}} ight} = Eleft[ {{X^2}} ight] - {left[ {Eleft( X ight)} ight]^2}]
- 协方差:[Covleft( {X,Y} ight) = Eleft{ {left[ {X - Eleft( X ight)} ight]left[ {Y - Eleft( Y ight)} ight]} ight} = Eleft( {XY} ight) - Eleft( X ight)Eleft( Y ight)]
- 相关系数:[{ ho _{XY}} = frac{{Covleft( {X,Y} ight)}}{{sqrt {Dleft( X ight)} sqrt {Dleft( Y ight)} }}]