zoukankan      html  css  js  c++  java
  • 数据结构和算法-二分查找

    参考:

    https://www.cnblogs.com/luoxn28/p/5767571.html

    https://blog.csdn.net/lovesummerforever/article/details/24588989

    https://www.cnblogs.com/kyoner/p/11080078.html

    二分查找算法也称为折半查找算法,是一种在查找算法中普遍使用的算法。其算法的基本思想是:在有序表中,取中间的记录作为比较关键字,若给定值与中间记录的关键字相等,则查找成功;若给定的值小于中间记录的关键字,则在中间记录的左半区间继续查找;若给定值大于中间记录的关键字,则在中间记录的右半区间继续查找;不断重复这个过程,直到查找成功。否则查找失败。这个思想与孔子中的中庸思想和相似。

    你真的会写二分查找吗

    1 二分查找

      二分查找是一个基础的算法,也是面试中常考的一个知识点。二分查找就是将查找的键和子数组的中间键作比较,如果被查找的键小于中间键,就在左子数组继续查找;如果大于中间键,就在右子数组中查找,否则中间键就是要找的元素。

    (图片来自《算法-第4版》)

    复制代码
    /**
     * 二分查找,找到该值在数组中的下标,否则为-1
     */
    static int binarySerach(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] == key) {
                return mid;
            }
            else if (array[mid] < key) {
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }
    
        return -1;
    }
    复制代码

      每次移动left和right指针的时候,需要在mid的基础上+1或者-1, 防止出现死循环, 程序也就能够正确的运行。

      注意:代码中的判断条件必须是while (left <= right),否则的话判断条件不完整,比如:array[3] = {1, 3, 5};待查找的键为5,此时在(low < high)条件下就会找不到,因为low和high相等时,指向元素5,但是此时条件不成立,没有进入while()中。

    2 二分查找的变种

      关于二分查找,如果条件稍微变换一下,比如:数组之中的数据可能可以重复,要求返回匹配的数据的最小(或最大)的下标;更近一步, 需要找出数组中第一个大于key的元素(也就是最小的大于key的元素的)下标,等等。 这些,虽然只有一点点的变化,实现的时候确实要更加的细心。

      二分查找的变种和二分查找原理一样,主要就是变换判断条件(也就是边界条件),如果想直接看如何记忆这些变种的窍门,请直接翻到本文最后。下面来看几种二分查找变种的代码:

    2.1 查找第一个与key相等的元素

      查找第一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标。

    复制代码
    // 查找第一个相等的元素
    static int findFirstEqual(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] >= key) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }
        if (left < array.length && array[left] == key) {
            return left;
        }
        
        return -1;
    }
    复制代码

    2.2 查找最后一个与key相等的元素

      查找最后一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标。

    复制代码
    // 查找最后一个相等的元素
    static int findLastEqual(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] <= key) {
                left = mid + 1;
            }
            else {
                right = mid - 1;
            }
        }
        if (right >= 0 && array[right] == key) {
            return right;
        }
    
        return -1;
    }
    复制代码

    2.3 查找最后一个等于或者小于key的元素

      查找最后一个等于或者小于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标;如果没有等于key值的元素,则返回小于key的最右边元素下标。

    复制代码
    // 查找最后一个等于或者小于key的元素
    static int findLastEqualSmaller(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] > key) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }
        return right;
    }
    复制代码

    2.4 查找最后一个小于key的元素

      查找最后一个小于key的元素,也就是说返回小于key的最右边元素下标。

    复制代码
    // 查找最后一个小于key的元素
    static int findLastSmaller(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] >= key) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }
        return right;
    }
    复制代码

    2.5 查找第一个等于或者大于key的元素

      查找第一个等于或者大于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标;如果没有等于key值的元素,则返回大于key的最左边元素下标。

    复制代码
    // 查找第一个等于或者大于key的元素
    static int findFirstEqualLarger(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] >= key) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }
        return left;
    }
    复制代码

    2.6 查找第一个大于key的元素

      查找第一个等于key的元素,也就是说返回大于key的最左边元素下标。

    复制代码
    // 查找第一个大于key的元素
    static int findFirstLarger(int[] array, int key) {
        int left = 0;
        int right = array.length - 1;
    
        // 这里必须是 <=
        while (left <= right) {
            int mid = (left + right) / 2;
            if (array[mid] > key) {
                right = mid - 1;
            }
            else {
                left = mid + 1;
            }
        }
        return left;
    }
    复制代码

    3 二分查找变种总结

    复制代码
    // 这里必须是 <=
    while (left <= right) {
        int mid = (left + right) / 2;
        if (array[mid] ? key) {
            //... right = mid - 1;
        }
        else {
            // ... left = mid + 1;
        }
    }
    return xxx;
    复制代码

      二分查找变种较多,不过它们的“套路”是一样的,以上代码就是其套路,如何快速写出二分查找的代码,只需按照以下步骤即可:

    1 首先判断出是返回left,还是返回right

      因为我们知道最后跳出while (left <= right)循环条件是right < left,且right = left - 1。最后right和left一定是卡在"边界值"的左右两边,如果是比较值为key,查找小于等于(或者是小于)key的元素,则边界值就是等于key的所有元素的最左边那个,其实应该返回left。

      以数组{1, 2, 3, 3, 4, 5}为例,如果需要查找第一个等于或者小于3的元素下标,我们比较的key值是3,则最后left和right需要满足以下条件:

      我们比较的key值是3,所以此时我们需要返回left。

    2 判断出比较符号

    复制代码
    int mid = (left + right) / 2;
    if (array[mid] ? key) {
        //... right = xxx;
    }
    else {
        // ... left = xxx;
    }
    复制代码

      也就是这里的 if (array[mid] ? key) 中的判断符号,结合步骤1和给出的条件,如果是查找小于等于key的元素,则知道应该使用判断符号>=,因为是要返回left,所以如果array[mid]等于或者大于key,就应该使用>=,以下是完整代码

    复制代码
    // 查找小于等于key的元素
    int mid = (left + right) / 2;
    if (array[mid] >= key) {
        right = mid - 1;
    }
    else {
        left = mid + 1;
    }
    复制代码

    参考:

      1、你真的会写二分检索吗?

      2、http://www.cnblogs.com/luoxn28/category/802645.html

     
  • 相关阅读:
    第十二章学习笔记
    UVa OJ 107 The Cat in the Hat (戴帽子的猫)
    UVa OJ 123 Searching Quickly (快速查找)
    UVa OJ 119 Greedy Gift Givers (贪婪的送礼者)
    UVa OJ 113 Power of Cryptography (密文的乘方)
    UVa OJ 112 Tree Summing (树的求和)
    UVa OJ 641 Do the Untwist (解密工作)
    UVa OJ 105 The Skyline Problem (地平线问题)
    UVa OJ 100 The 3n + 1 problem (3n + 1问题)
    UVa OJ 121 Pipe Fitters (装管子)
  • 原文地址:https://www.cnblogs.com/xuwc/p/13941666.html
Copyright © 2011-2022 走看看