zoukankan      html  css  js  c++  java
  • linux uart驱动——相关数据结构以及API(二)

    一、核心数据结构
          串口驱动有3个核心数据结构,它们都定义在<#include linux/serial_core.h>
    1、uart_driver
         uart_driver包含了串口设备名、串口驱动名、主次设备号、串口控制台(可选)等信息,还封装了tty_driver(底层串口驱动无需关心tty_driver)。

       1:  struct uart_driver {
       2:      struct module    *owner;      /* 拥有该uart_driver的模块,一般为THIS_MODULE */
       3:      const char    *driver_name; /* 串口驱动名,串口设备文件名以驱动名为基础 */
       4:      const char    *dev_name;      /* 串口设备名 */
       5:      int             major;          /* 主设备号 */
       6:      int             minor;          /* 次设备号 */
       7:      int             nr;          /* 该uart_driver支持的串口个数(最大) */
       8:      struct console    *cons;    /* 其对应的console.若该uart_driver支持serial console,否则为NULL */
       9:   
      10:      /*
      11:       * these are private; the low level driver should not
      12:       * touch these; they should be initialised to NULL
      13:       */
      14:      struct uart_state    *state;
      15:      struct tty_driver    *tty_driver;
      16:  };

    2、uart_port
          uart_port用于描述串口端口的I/O端口或I/O内存地址、FIFO大小、端口类型、串口时钟等信息。实际上,一个uart_port实例对应一个串口设备

       1:  struct uart_port {
       2:      spinlock_t        lock;            /* port lock 串口端口锁 */
       3:      unsigned long        iobase;        /* in/out[bwl] io端口基地 */
       4:      unsigned char __iomem    *membase;/* read/write[bwl] IO内存基地址,经映射(如ioremap)后的IO内存虚拟基地址 */
       5:      unsigned int        (*serial_in)(struct uart_port *, int); 
       6:      void            (*serial_out)(struct uart_port *, int, int);
       7:      void            (*set_termios)(struct uart_port *,
       8:                                 struct ktermios *new,
       9:                                 struct ktermios *old);
      10:      void            (*pm)(struct uart_port *, unsigned int state,
      11:                        unsigned int old);
      12:      unsigned int        irq;            /* irq number */
      13:      unsigned long        irqflags;        /* irq flags  */
      14:      unsigned int        uartclk;        /* base uart clock */
      15:      unsigned int        fifosize;        /* tx fifo size */
      16:      unsigned char        x_char;            /* xon/xoff char */
      17:      unsigned char        regshift;        /* reg offset shift */
      18:      unsigned char        iotype;            /* io access style */
      19:      unsigned char        unused1;
      20:   
      21:  #define UPIO_PORT        (0)
      22:  #define UPIO_HUB6        (1)
      23:  #define UPIO_MEM        (2)
      24:  #define UPIO_MEM32        (3)
      25:  #define UPIO_AU            (4)            /* Au1x00 type IO */
      26:  #define UPIO_TSI        (5)            /* Tsi108/109 type IO */
      27:  #define UPIO_DWAPB        (6)            /* DesignWare APB UART */
      28:  #define UPIO_RM9000        (7)            /* RM9000 type IO */
      29:  #define UPIO_DWAPB32        (8)            /* DesignWare APB UART (32 bit accesses) */
      30:   
      31:      unsigned int        read_status_mask;    /* driver specific */
      32:      unsigned int        ignore_status_mask;    /* driver specific */
      33:      struct uart_state    *state;            /* pointer to parent state */
      34:      struct uart_icount    icount;            /* statistics */
      35:   
      36:      struct console        *cons;            /* struct console, if any */
      37:  #if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(SUPPORT_SYSRQ)
      38:      unsigned long        sysrq;            /* sysrq timeout */
      39:  #endif
      40:   
      41:      upf_t            flags;
      42:   
      43:  #define UPF_FOURPORT        ((__force upf_t) (1 << 1))
      44:  #define UPF_SAK            ((__force upf_t) (1 << 2))
      45:  #define UPF_SPD_MASK        ((__force upf_t) (0x1030))
      46:  #define UPF_SPD_HI        ((__force upf_t) (0x0010))
      47:  #define UPF_SPD_VHI        ((__force upf_t) (0x0020))
      48:  #define UPF_SPD_CUST        ((__force upf_t) (0x0030))
      49:  #define UPF_SPD_SHI        ((__force upf_t) (0x1000))
      50:  #define UPF_SPD_WARP        ((__force upf_t) (0x1010))
      51:  #define UPF_SKIP_TEST        ((__force upf_t) (1 << 6))
      52:  #define UPF_AUTO_IRQ        ((__force upf_t) (1 << 7))
      53:  #define UPF_HARDPPS_CD        ((__force upf_t) (1 << 11))
      54:  #define UPF_LOW_LATENCY        ((__force upf_t) (1 << 13))
      55:  #define UPF_BUGGY_UART        ((__force upf_t) (1 << 14))
      56:  #define UPF_NO_TXEN_TEST    ((__force upf_t) (1 << 15))
      57:  #define UPF_MAGIC_MULTIPLIER    ((__force upf_t) (1 << 16))
      58:  #define UPF_CONS_FLOW        ((__force upf_t) (1 << 23))
      59:  #define UPF_SHARE_IRQ        ((__force upf_t) (1 << 24))
      60:  /* The exact UART type is known and should not be probed.  */
      61:  #define UPF_FIXED_TYPE        ((__force upf_t) (1 << 27))
      62:  #define UPF_BOOT_AUTOCONF    ((__force upf_t) (1 << 28))
      63:  #define UPF_FIXED_PORT        ((__force upf_t) (1 << 29))
      64:  #define UPF_DEAD        ((__force upf_t) (1 << 30))
      65:  #define UPF_IOREMAP        ((__force upf_t) (1 << 31))
      66:   
      67:  #define UPF_CHANGE_MASK        ((__force upf_t) (0x17fff))
      68:  #define UPF_USR_MASK        ((__force upf_t) (UPF_SPD_MASK|UPF_LOW_LATENCY))
      69:   
      70:      unsigned int        mctrl;            /* current modem ctrl settings */
      71:      unsigned int        timeout;        /* character-based timeout */
      72:      unsigned int        type;            /* port type */
      73:      const struct uart_ops    *ops;
      74:      unsigned int        custom_divisor;
      75:      unsigned int        line;            /* port index */
      76:      resource_size_t        mapbase;        /* for ioremap */
      77:      struct device        *dev;            /* parent device */
      78:      unsigned char        hub6;            /* this should be in the 8250 driver */
      79:      unsigned char        suspended;
      80:      unsigned char        irq_wake;
      81:      unsigned char        unused[2];
      82:      void            *private_data;        /* generic platform data pointer */
      83:  };

         uart_iconut为串口信息计数器,包含了发送字符计数、接收字符计数等。在串口的发送中断处理函数和接收中断处理函数中,我们需要管理这些计数。

       1:  struct uart_icount {
       2:      __u32    cts;
       3:      __u32    dsr;
       4:      __u32    rng;
       5:      __u32    dcd;
       6:      __u32    rx;      /* 发送字符计数 */
       7:      __u32    tx;      /* 接受字符计数 */
       8:      __u32    frame;   /* 帧错误计数 */
       9:      __u32    overrun; /* Rx FIFO溢出计数 */
      10:      __u32    parity;  /* 帧校验错误计数 */
      11:      __u32    brk;     /* break计数 */
      12:      __u32    buf_overrun;
      13:  };

          uart_stat有两个成员在底层串口驱动会用到:xmit和port。用户空间程序通过串口发送数据时,上层驱动将用户数据保存在xmit;而串口发送中断处理函数就是通过xmit获取到用户数据并将它们发送出去。串口接收中断处理函数需要通过port将接收到的数据传递给行规则层。

       1:  /*
       2:   * This is the state information which is persistent across opens.
       3:   */
       4:  struct uart_state {
       5:      struct tty_port        port;
       6:   
       7:      int            pm_state;
       8:      struct circ_buf        xmit;
       9:   
      10:      struct tasklet_struct    tlet;
      11:      struct uart_port    *uart_port;
      12:  };
     

    3、uart_ops

    uart_ops涵盖了串口驱动可对串口设备进行的所有操作

       1:  /*
       2:   * This structure describes all the operations that can be
       3:   * done on the physical hardware.
       4:   */
       5:  struct uart_ops {
       6:      unsigned int    (*tx_empty)(struct uart_port *);/* 串口的Tx FIFO缓存是否为空 */
       7:      void        (*set_mctrl)(struct uart_port *, unsigned int mctrl);/* 设置串口modem控制 */
       8:      unsigned int    (*get_mctrl)(struct uart_port *); /* 获取串口modem控制 */
       9:      void        (*stop_tx)(struct uart_port *);/* 禁止串口发送数据 */
      10:      void        (*start_tx)(struct uart_port *);/* 使能串口发送数据 */
      11:      void        (*send_xchar)(struct uart_port *, char ch);/* 发送xChar */
      12:      void        (*stop_rx)(struct uart_port *);/* 禁止串口接收数据 */
      13:      void        (*enable_ms)(struct uart_port *);/* 使能modem的状态信号 */
      14:      void        (*break_ctl)(struct uart_port *, int ctl); /* 设置break信号 */
      15:      int        (*startup)(struct uart_port *);/* 启动串口,应用程序打开串口设备文件时,该函数会被调用 */
      16:      void        (*shutdown)(struct uart_port *);/* 关闭串口,应用程序关闭串口设备文件时,该函数会被调用 */
      17:      void        (*flush_buffer)(struct uart_port *);
      18:      void        (*set_termios)(struct uart_port *, struct ktermios *new,
      19:                         struct ktermios *old);/* 设置串口参数 */
      20:      void        (*set_ldisc)(struct uart_port *, int new);
      21:      void        (*pm)(struct uart_port *, unsigned int state,
      22:                    unsigned int oldstate);/* 串口电源管理 */
      23:      int        (*set_wake)(struct uart_port *, unsigned int state);
      24:      void        (*wake_peer)(struct uart_port *);
      25:   
      26:      /*
      27:       * Return a string describing the type of the port
      28:       */
      29:      const char *(*type)(struct uart_port *);/* 返回一描述串口类型的字符串 */
      30:   
      31:      /*
      32:       * Release IO and memory resources used by the port.
      33:       * This includes iounmap if necessary.
      34:       */
      35:      void        (*release_port)(struct uart_port *);/* 释放串口已申请的IO端口/IO内存资源,必要时还需iounmap */
      36:   
      37:      /*
      38:       * Request IO and memory resources used by the port.
      39:       * This includes iomapping the port if necessary.
      40:       */
      41:      int        (*request_port)(struct uart_port *); /* 申请必要的IO端口/IO内存资源,必要时还可以重新映射串口端口 */
      42:      void        (*config_port)(struct uart_port *, int);/* 执行串口所需的自动配置 */
      43:      int        (*verify_port)(struct uart_port *, struct serial_struct *);/* 验证串口所需的自动配置 */
      44:      int        (*ioctl)(struct uart_port *, unsigned int, unsigned long);
      45:  #ifdef CONFIG_CONSOLE_POLL
      46:      void    (*poll_put_char)(struct uart_port *, unsigned char);
      47:      int        (*poll_get_char)(struct uart_port *);
      48:  #endif
      49:  };
     
    二、串口驱动API

    1、uart_register_driver

       1:  /  * 功能:uart_register_driver用于将串口驱动uart_driver注册到内核(串口核心层)中,通常在模块初始化函数调用该函数。   
       2:     * 参数 drv:要注册的uart_driver  
       3:     * 返回值:  成功,返回0;否则返回错误码  
       4:  */   
       5:    int uart_register_driver(struct uart_driver *drv)   

    2、uart_unregister_driver

       1:  /* 功能:    uart_unregister_driver用于注销我们已注册的uart_driver,通常在模块卸载函数调用该函数
       2:   * 参数 drv:要注销的uart_driver
       3:  
       4:   * 返回值:  成功,返回0;否则返回错误码
       5:   */
       6:  void uart_unregister_driver(struct uart_driver *drv)
       7:   

    3、uart_add_one_port

       1:  /* 功能:    uart_add_one_port用于为串口驱动添加一个串口端口,通常在探测到设备后(驱动的设备probe方法)调用该函数
       2:   * 参数 drv:串口驱动
       3:   *      port:要添加的串口端口
       4:  
       5:   * 返回值:  成功,返回0;否则返回错误码
       6:   */
       7:  int uart_add_one_port(struct uart_driver *drv, struct uart_port *port)

    4、uart_remove_one_port

       1:  /* 功能:     uart_remove_one_port用于删除一个已添加到串口驱动中的串口端口,通常在驱动卸载时调用该函数
       2:   * 参数 drv: 串口驱动
       3:   *      port: 要删除的串口端口
       4:   * 返回值:   成功,返回0;否则返回错误码
       5:   */
       6:  int uart_remove_one_port(struct uart_driver *drv, struct uart_port *port)

    5、uart_write_wakeup

       1:  /* 功能:     uart_write_wakeup唤醒上层因向串口端口写数据而阻塞的进程,通常在串口发送中断处理函数中调用该函数
       2:   * 参数 port:需要唤醒写阻塞进程的串口端口
       3:   */
       4:  void uart_write_wakeup(struct uart_port *port)

    6、uart_suspend_port

       1:  /* 功能:     uart_suspend_port用于挂起特定的串口端口
       2:   * 参数 drv: 要挂起的串口端口所属的串口驱动
       3:   *      port:要挂起的串口端口
       4:   * 返回值:   成功返回0;否则返回错误码
       5:   */
       6:  int uart_suspend_port(struct uart_driver *drv, struct uart_port *port)

    7、uart_resume_port

       1:  /* 功能:     uart_resume_port用于恢复某一已挂起的串口
       2:   * 参数 drv: 要恢复的串口端口所属的串口驱动
       3:   *      port:要恢复的串口端口
       4:   * 返回值:   成功返回0;否则返回错误码
       5:   */
       6:  int uart_resume_port(struct uart_driver *drv, struct uart_port *port)

    8、uart_get_baud_rate

       1:  /* 功能:        uart_get_baud_rate通过解码termios结构体来获取指定串口的波特率
       2:   * 参数 port:  要获取波特率的串口端口
       3:   *     termios:当前期望的termios配置(包含串口波特率)
       4:   *     old:    以前的termios配置,可以为NULL
       5:   *     min:    可接受的最小波特率
       6:   *     max:    可接受的最大波特率
       7:   * 返回值:     串口的波特率
       8:   */
       9:  unsigned int
      10:  uart_get_baud_rate(struct uart_port *port, struct ktermios *termios,
      11:  struct ktermios *old, unsigned int min, unsigned int max)

    9、uart_get_divisor

       1:  /* 功能:     uart_get_divisor用于计算某一波特率的串口时钟分频数(串口波特率除数)
       2:   * 参数 port:要计算时钟分频数的串口端口
       3:   *      baud:期望的波特率
       4:   *返回值:    串口时钟分频数
       5:   */
       6:  unsigned int uart_get_divisor(struct uart_port *port, unsigned int baud)

    10、uart_update_timeout

       1:  /* 功能:      uart_update_timeout用于更新(设置)串口FIFO超时时间
       2:   * 参数 port: 要更新超时时间的串口端口
       3:   *     cflag:termios结构体的cflag值
       4:   *     baud: 串口的波特率
       5:   */
       6:  void uart_update_timeout(struct uart_port *port, unsigned int cflag, unsigned int baud)

    11、uart_match_port

       1:  /* 功能:uart_match_port用于判断两串口端口是否为同一端口
       2:   * 参数 port1、port2:要判断的串口端口
       3:   * 返回值:不同返回0;否则返回非0
       4:   */
       5:  int uart_match_port(struct uart_port *port1, struct uart_port *port2)

    12、uart_console_write

       1:  /* 功能:        uart_console_write用于向串口端口写一控制台信息
       2:  
       3:   * 参数 port:    要写信息的串口端口
       4:   *     s:       要写的信息
       5:   *     count:   信息的大小
       6:   *     putchar: 用于向串口端口写字符的函数,该函数函数有两个参数:串口端口和要写的字符
       7:   */
       8:  void uart_console_write(struct uart_port *port, const char *s,
       9:  unsigned int count,
      10:  void (*putchar)(struct uart_port *, int))
      11:   
  • 相关阅读:
    PHP.TP框架下商品项目的优化2-图片优化
    PHP.TP框架下商品项目的优化1-时间插件、鼠标所在行高亮、布局规划页面
    PHP.26-TP框架商城应用实例-后台3-商品修改、删除
    PHP.25-TP框架商城应用实例-后台2-商品列表页-搜索、翻页、排序
    PHP.24-TP框架商城应用实例-后台1-添加商品功能、钩子函数、在线编辑器、过滤XSS、上传图片并生成缩略图
    PHP.23-ThinkPHP框架的三种模型实例化-(D()方法与M()方法的区别)
    PHP.22-Smart模版
    python爬取某站上海租房图片
    Python爬虫入门这一篇就够了
    按PEP8风格自动排版Python代码
  • 原文地址:https://www.cnblogs.com/xuyh/p/6047896.html
Copyright © 2011-2022 走看看