zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence (最长公共子序列)

    Common Subsequence

    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
     
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
     
    4
    2
    0

     

     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 #include<map>
     7 #include<set>
     8 #include<vector>
     9 using namespace std;
    10 #define ll long long
    11 const int maxn=1e3+5;
    12 //最长公共子序列
    13 char a[maxn];
    14 char b[maxn];
    15 int dp[maxn][maxn];
    16 int main()
    17 {
    18     ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    19     while(scanf("%s%s",a,b)!=EOF)
    20     {
    21         int a_len=strlen(a);
    22         int b_len=strlen(b);
    23         memset(dp,0,sizeof(dp));
    24         for(int i=0;i<a_len;i++)
    25         {
    26             for(int j=0;j<b_len;j++)
    27             {
    28                 if(a[i]==b[j])
    29                     dp[i+1][j+1]=dp[i][j]+1;
    30                 else
    31                     dp[i+1][j+1]=max(dp[i][j+1],dp[i+1][j]);
    32             }
    33         }
    34         cout<<dp[a_len][b_len]<<endl;
    35     }
    36     return 0;
    37 }
     
    大佬见笑,,
  • 相关阅读:
    响应式设计的 5 个 CSS 实用技巧
    iframe的高度自适应的方法
    HDOJ1285 比赛排名(拓扑排序)
    GENIA项目GENIA语料库
    HDOJ1102 修路问题(最小生成树Prim)
    二叉树的一些操作
    GENIA项目综述论文(E99)
    GENIA项目主页
    读《统计自然语言处理》有笔记——语料库与知识词汇库
    HDOJ2535 ( Vote ) 【水题】
  • 原文地址:https://www.cnblogs.com/xwl3109377858/p/10997795.html
Copyright © 2011-2022 走看看