给定平面上 n 对不同的点,“回旋镖” 是由点表示的元组 (i, j, k) ,其中 i 和 j 之间的距离和 i 和 k 之间的距离相等(需要考虑元组的顺序)。
找到所有回旋镖的数量。你可以假设 n 最大为 500,所有点的坐标在闭区间 [-10000, 10000] 中。
示例:
输入:
[[0,0],[1,0],[2,0]]
输出:
2
解释:
两个回旋镖为 [[1,0],[0,0],[2,0]] 和 [[1,0],[2,0],[0,0]]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/number-of-boomerangs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
25 / 32 个通过测试用例
tle
class Solution: def numberOfBoomerangs(self, points: List[List[int]]) -> int: if len(points)<3:return 0 def dis(p,q): return (p[0]-q[0])**2+(p[1]-q[1])**2 def check(i,j,k): return dis(i,j)==dis(i,k) def permute(nums): return itertools.permutations(nums,3) a=permute(points) res=0 for i in a: if check(i[0],i[1],i[2]): res+=1 return res
ac
class Solution: def numberOfBoomerangs(self, points: List[List[int]]) -> int: res=0 for i in points: dis={} for j in points: if i!=j: d=(i[0]-j[0])**2+(i[1]-j[1])**2 if d in dis: dis[d]+=1 else: dis[d]=1 for k in dis.values(): if k>0: res+=k**2-k return res
带佬操作
class Solution{ public: int numberOfBoomerangs(vector<pair<int, int>>& points) { int booms = 0; for (auto &p : points) { unordered_map<double, int> ctr(points.size()); for (auto &q : points) booms += 2 * ctr[hypot(p.first - q.first, p.second - q.second)]++;//Every time we add a "boomerang" point that can make up the same distance, we actually have to add 2 * the current number of "boomerang" tuples at the same distance point (that is, after the point to each point at the same distance , Change the position again, so * 2) } return booms; } };