你准备参加一场远足活动。给你一个二维 rows x columns
的地图 heights
,其中 heights[row][col]
表示格子 (row, col)
的高度。一开始你在最左上角的格子 (0, 0)
,且你希望去最右下角的格子 (rows-1, columns-1)
(注意下标从 0 开始编号)。你每次可以往 上,下,左,右 四个方向之一移动,你想要找到耗费 体力 最小的一条路径。
一条路径耗费的 体力值 是路径上相邻格子之间 高度差绝对值 的 最大值 决定的。
请你返回从左上角走到右下角的最小 体力消耗值 。
示例 1:
输入:heights = [[1,2,2],[3,8,2],[5,3,5]] 输出:2 解释:路径 [1,3,5,3,5] 连续格子的差值绝对值最大为 2 。 这条路径比路径 [1,2,2,2,5] 更优,因为另一条路径差值最大值为 3 。
示例 2:
输入:heights = [[1,2,3],[3,8,4],[5,3,5]] 输出:1 解释:路径 [1,2,3,4,5] 的相邻格子差值绝对值最大为 1 ,比路径 [1,3,5,3,5] 更优。
示例 3:
输入:heights = [[1,2,1,1,1],[1,2,1,2,1],[1,2,1,2,1],[1,2,1,2,1],[1,1,1,2,1]] 输出:0 解释:上图所示路径不需要消耗任何体力。
提示:
rows == heights.length
columns == heights[i].length
1 <= rows, columns <= 100
1 <= heights[i][j] <= 106
用个双向队列dfs跑一下就a了
class Solution: def minimumEffortPath(self, heights: List[List[int]]) -> int: q=deque([[0,0,0]]) effort=[[float('inf')]*len(i) for i in heights] effort[0][0]=0 while q: i,j,k=q.popleft() if k<=effort[i][j]: for x,y in (i-1,j),(i,j+1),(i+1,j),(i,j-1): if 0<=x<len(heights) and 0<=y<len(heights[0]): z=max(k,abs(heights[x][y]-heights[i][j]))#update z if z<effort[x][y]:#update effort effort[x][y]=z q.append((x,y,z)) return effort[-1][-1]
关于deque in python:deque in python