zoukankan      html  css  js  c++  java
  • Reduction operations

    Reuction operations

    Reduction operations

    A reduction operations on a tensor is an operation that reduces the number of elements contained within the tensor.

    Tensors give us the ability to manage out data. Reduction operations allow us to perform operations on elements within a single tensor.

    Suppose we have the following 3$ imes$3 rank-2 tensor.

    > t = torch.tensor([
        [0, 1, 0],
        [2, 0, 2],
        [0, 3, 0]
    ], dtype=torch.float32)
    

    Common tensor reduction operations

    > t.sum()
    tensor(8.)
    
    > t.numel()
    9
    
    > t.prod()
    tensor(0.)
    
    > t.mean()
    tensor(.8889)
    
    > t.std()
    tensor(1.1667)
    

    Reducing tensors by axes

    Suppose we have the following tensor:

    > t = torch.tensor([
        [1,1,1,1],
        [2,2,2,2],
        [3,3,3,3]
    ], dtype=torch.float32)
    

    This time , we will specify a dimension to reduce.

    > t.sum(dim=0)
    tensor([6., 6., 6., 6.])
    
    > t.sum(dim=1)
    tensor([4., 8., 12.])
    

    Argmax tensor reduction operation

    Argmax returns the index location of the maximum value inside a tensor.

    t = torch.tensor([
        [1,0,0,2],
        [0,3,3,0],
        [4,0,0,5]
    ], dtype=torch.float32)
    

    If we don't specific an axis to the argmax() method, it returns the index location of the max value from the flattened tensor, which in the case is indeed 11.

    > t.max()
    tensor(5.)
    
    > t.argmax()
    tensor(11)
    
    > t.flatten()
    tensor([1., 0., 0., 2., 0., 3., 3., 0., 4., 0., 0., 5.])
    

    Work with specific axis now:

    > t.max(dim=0)
    (tensor([4., 3., 3., 5.]), tensor([2, 1, 1, 2]))
    
    > t.argmax(dim=0)
    tensor([2, 1, 1, 2])
    
    > t.max(dim=1)
    (tensor([2., 3., 5.]), tensor([3, 1, 3]))
    
    > t.argmax(dim=1)
    tensor([3, 1, 3])
    

    In practice, we often use the argmax() function on a network's output prediction tensor, to determine which category has the highest prediction value.

  • 相关阅读:
    Laravel 初始化
    ant design pro 左上角 logo 修改
    请求到服务端后是怎么处理的
    Websocket 知识点
    王道数据结构 (7) KMP 算法
    王道数据结构 (6) 简单的模式匹配算法
    王道数据结构 (4) 单链表 删除节点
    王道数据结构 (3) 单链表 插入节点
    王道数据结构 (2) 单链表 尾插法
    王道数据结构 (1) 单链表 头插法
  • 原文地址:https://www.cnblogs.com/xxxxxxxxx/p/11068461.html
Copyright © 2011-2022 走看看