zoukankan      html  css  js  c++  java
  • Reduction operations

    Reuction operations

    Reduction operations

    A reduction operations on a tensor is an operation that reduces the number of elements contained within the tensor.

    Tensors give us the ability to manage out data. Reduction operations allow us to perform operations on elements within a single tensor.

    Suppose we have the following 3$ imes$3 rank-2 tensor.

    > t = torch.tensor([
        [0, 1, 0],
        [2, 0, 2],
        [0, 3, 0]
    ], dtype=torch.float32)
    

    Common tensor reduction operations

    > t.sum()
    tensor(8.)
    
    > t.numel()
    9
    
    > t.prod()
    tensor(0.)
    
    > t.mean()
    tensor(.8889)
    
    > t.std()
    tensor(1.1667)
    

    Reducing tensors by axes

    Suppose we have the following tensor:

    > t = torch.tensor([
        [1,1,1,1],
        [2,2,2,2],
        [3,3,3,3]
    ], dtype=torch.float32)
    

    This time , we will specify a dimension to reduce.

    > t.sum(dim=0)
    tensor([6., 6., 6., 6.])
    
    > t.sum(dim=1)
    tensor([4., 8., 12.])
    

    Argmax tensor reduction operation

    Argmax returns the index location of the maximum value inside a tensor.

    t = torch.tensor([
        [1,0,0,2],
        [0,3,3,0],
        [4,0,0,5]
    ], dtype=torch.float32)
    

    If we don't specific an axis to the argmax() method, it returns the index location of the max value from the flattened tensor, which in the case is indeed 11.

    > t.max()
    tensor(5.)
    
    > t.argmax()
    tensor(11)
    
    > t.flatten()
    tensor([1., 0., 0., 2., 0., 3., 3., 0., 4., 0., 0., 5.])
    

    Work with specific axis now:

    > t.max(dim=0)
    (tensor([4., 3., 3., 5.]), tensor([2, 1, 1, 2]))
    
    > t.argmax(dim=0)
    tensor([2, 1, 1, 2])
    
    > t.max(dim=1)
    (tensor([2., 3., 5.]), tensor([3, 1, 3]))
    
    > t.argmax(dim=1)
    tensor([3, 1, 3])
    

    In practice, we often use the argmax() function on a network's output prediction tensor, to determine which category has the highest prediction value.

  • 相关阅读:
    关于jquery动态添加的新元素无法绑定事件那些事
    关于jquery获取json数据的格式问题
    beescms文章列表页函数学习
    beescms相关函数学习
    这是二零一四年十点整的广州
    POJ 1852 Ants 分析
    hiho_1114_扫雷
    hiho_1014_Trie_Tree
    排列组合
    用链表写的冒泡排序理解
  • 原文地址:https://www.cnblogs.com/xxxxxxxxx/p/11068461.html
Copyright © 2011-2022 走看看