zoukankan      html  css  js  c++  java
  • torch.max

    torch.max()


    torch.max(input) -> Tensor
    

    Explation:

    ​ Returns the maximum value of all elements in the input tensor

    Example:

    >>> a = torch.randn(1, 3)
    >>> a
    tensor([[-0.7461, -0.7730,  0.6381]])
    >>> torch.max(a)
    tensor(0.6381)
    

    torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)
    

    Explation:

    ​ Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).

    Parameters:

    • input(Tensor) - the input tensor
    • dim(int) - the dimension to reduce
    • keepdim(bool, optional) - whether the output tensors have dim retained or not. Default: False.
    • out(tuple, optional) - the result tuple of two output tensors (max, max_indices)

    Example:

    >>> a = torch.randn(4, 4)
    tensor([[-0.7037, -0.9814, -0.2549,  0.7349],
            [-0.0937,  0.9692, -0.2475, -0.3693],
            [ 0.5427,  0.9605,  0.2246,  0.3269],
            [-0.9964,  0.6920,  0.7989, -0.2616]])
    >>> torch.max(a)
    torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
    					 indices=tensor([3, 1, 1, 2]))
    

    torch.max(input, other, out=None) ->Tensor
    

    Explation:

    ​ Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken. The shapes of input and other don’t need to match, but they must be broadcastable.

    [out_i = max(tensor_i, other_i) ]

    Parameters:

    • input(Tensor) - the input tensor
    • other(Tensor) - the second input tensor
    • out(Tensor, optional) - the output tensor

    Example:

    >>> a = torch.randn(4)
    >>> a
    tensor([ 0.2942, -0.7416,  0.2653, -0.1584])
    >>> b = torch.randn(4)
    >>> b
    tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
    >>> torch.max(a, b)
    tensor([ 0.8722, -0.7416,  0.2653, -0.1584])
    

    同理,这些方法可推广至torch.min().

  • 相关阅读:
    table问题
    生成跟相应qq聊天
    查数组 indexOf()用法
    Ajax请求数据的两种方式
    Ajax面试题
    内部类及静态内部类的实例化
    为什么在开发中大部分的时候都在用session而Application基本上都不去使用?
    Java序列化与反序列化
    Java反射机制
    Java中线程同步的方法
  • 原文地址:https://www.cnblogs.com/xxxxxxxxx/p/11117727.html
Copyright © 2011-2022 走看看