zoukankan      html  css  js  c++  java
  • torch.max

    torch.max()


    torch.max(input) -> Tensor
    

    Explation:

    ​ Returns the maximum value of all elements in the input tensor

    Example:

    >>> a = torch.randn(1, 3)
    >>> a
    tensor([[-0.7461, -0.7730,  0.6381]])
    >>> torch.max(a)
    tensor(0.6381)
    

    torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)
    

    Explation:

    ​ Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).

    Parameters:

    • input(Tensor) - the input tensor
    • dim(int) - the dimension to reduce
    • keepdim(bool, optional) - whether the output tensors have dim retained or not. Default: False.
    • out(tuple, optional) - the result tuple of two output tensors (max, max_indices)

    Example:

    >>> a = torch.randn(4, 4)
    tensor([[-0.7037, -0.9814, -0.2549,  0.7349],
            [-0.0937,  0.9692, -0.2475, -0.3693],
            [ 0.5427,  0.9605,  0.2246,  0.3269],
            [-0.9964,  0.6920,  0.7989, -0.2616]])
    >>> torch.max(a)
    torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
    					 indices=tensor([3, 1, 1, 2]))
    

    torch.max(input, other, out=None) ->Tensor
    

    Explation:

    ​ Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken. The shapes of input and other don’t need to match, but they must be broadcastable.

    [out_i = max(tensor_i, other_i) ]

    Parameters:

    • input(Tensor) - the input tensor
    • other(Tensor) - the second input tensor
    • out(Tensor, optional) - the output tensor

    Example:

    >>> a = torch.randn(4)
    >>> a
    tensor([ 0.2942, -0.7416,  0.2653, -0.1584])
    >>> b = torch.randn(4)
    >>> b
    tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
    >>> torch.max(a, b)
    tensor([ 0.8722, -0.7416,  0.2653, -0.1584])
    

    同理,这些方法可推广至torch.min().

  • 相关阅读:
    默认使用什么序列化框架,你知道的还有哪些?
    一般使用什么注册中心?还有别的选择吗?
    Dubbo 的整体架构设计有哪些分层?
    Java 中是如何支持正则表达式操作的?
    Dubbo 集群容错有几种方案?
    Dubbo 推荐用什么协议?
    说说核心的配置有哪些?
    Dubbo 如何优雅停机?
    Dubbo 必须依赖的包有哪些?
    服务上线怎么兼容旧版本?
  • 原文地址:https://www.cnblogs.com/xxxxxxxxx/p/11117727.html
Copyright © 2011-2022 走看看