zoukankan      html  css  js  c++  java
  • torch.max

    torch.max()


    torch.max(input) -> Tensor
    

    Explation:

    ​ Returns the maximum value of all elements in the input tensor

    Example:

    >>> a = torch.randn(1, 3)
    >>> a
    tensor([[-0.7461, -0.7730,  0.6381]])
    >>> torch.max(a)
    tensor(0.6381)
    

    torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)
    

    Explation:

    ​ Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).

    Parameters:

    • input(Tensor) - the input tensor
    • dim(int) - the dimension to reduce
    • keepdim(bool, optional) - whether the output tensors have dim retained or not. Default: False.
    • out(tuple, optional) - the result tuple of two output tensors (max, max_indices)

    Example:

    >>> a = torch.randn(4, 4)
    tensor([[-0.7037, -0.9814, -0.2549,  0.7349],
            [-0.0937,  0.9692, -0.2475, -0.3693],
            [ 0.5427,  0.9605,  0.2246,  0.3269],
            [-0.9964,  0.6920,  0.7989, -0.2616]])
    >>> torch.max(a)
    torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
    					 indices=tensor([3, 1, 1, 2]))
    

    torch.max(input, other, out=None) ->Tensor
    

    Explation:

    ​ Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken. The shapes of input and other don’t need to match, but they must be broadcastable.

    [out_i = max(tensor_i, other_i) ]

    Parameters:

    • input(Tensor) - the input tensor
    • other(Tensor) - the second input tensor
    • out(Tensor, optional) - the output tensor

    Example:

    >>> a = torch.randn(4)
    >>> a
    tensor([ 0.2942, -0.7416,  0.2653, -0.1584])
    >>> b = torch.randn(4)
    >>> b
    tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
    >>> torch.max(a, b)
    tensor([ 0.8722, -0.7416,  0.2653, -0.1584])
    

    同理,这些方法可推广至torch.min().

  • 相关阅读:
    Python的socket模块详解
    C语言中输入输出重定向,freopen的用法和实例
    JPG BMP TIF PNG 图像编码压缩率和编解码时间比较
    FFMPEG 内部YUV转RGB过程
    STL 中的数据结构
    FFmpeg 深度学习 livevideoStack 笔记
    Docker 编译tensorflow-1.14.0 静态库
    CMake 笔记
    Torch 学习
    Docker 学习笔记
  • 原文地址:https://www.cnblogs.com/xxxxxxxxx/p/11117727.html
Copyright © 2011-2022 走看看