zoukankan      html  css  js  c++  java
  • torch.max

    torch.max()


    torch.max(input) -> Tensor
    

    Explation:

    ​ Returns the maximum value of all elements in the input tensor

    Example:

    >>> a = torch.randn(1, 3)
    >>> a
    tensor([[-0.7461, -0.7730,  0.6381]])
    >>> torch.max(a)
    tensor(0.6381)
    

    torch.max(input, dim, keepdim=False, out=None) ->(Tensor, LongTensor)
    

    Explation:

    ​ Returns a namedtuple (values, indices) where values is the maximum value of each row of the input tensor in the given dimension dim. And indices is the index location of each maximum value found (argmax).

    Parameters:

    • input(Tensor) - the input tensor
    • dim(int) - the dimension to reduce
    • keepdim(bool, optional) - whether the output tensors have dim retained or not. Default: False.
    • out(tuple, optional) - the result tuple of two output tensors (max, max_indices)

    Example:

    >>> a = torch.randn(4, 4)
    tensor([[-0.7037, -0.9814, -0.2549,  0.7349],
            [-0.0937,  0.9692, -0.2475, -0.3693],
            [ 0.5427,  0.9605,  0.2246,  0.3269],
            [-0.9964,  0.6920,  0.7989, -0.2616]])
    >>> torch.max(a)
    torch.return_types.max(values=tensor([0.7349, 0.9692, 0.9605, 0.7989]),
    					 indices=tensor([3, 1, 1, 2]))
    

    torch.max(input, other, out=None) ->Tensor
    

    Explation:

    ​ Each element of the tensor input is compared with the corresponding element of the tensor other and an element-wise maximum is taken. The shapes of input and other don’t need to match, but they must be broadcastable.

    [out_i = max(tensor_i, other_i) ]

    Parameters:

    • input(Tensor) - the input tensor
    • other(Tensor) - the second input tensor
    • out(Tensor, optional) - the output tensor

    Example:

    >>> a = torch.randn(4)
    >>> a
    tensor([ 0.2942, -0.7416,  0.2653, -0.1584])
    >>> b = torch.randn(4)
    >>> b
    tensor([ 0.8722, -1.7421, -0.4141, -0.5055])
    >>> torch.max(a, b)
    tensor([ 0.8722, -0.7416,  0.2653, -0.1584])
    

    同理,这些方法可推广至torch.min().

  • 相关阅读:
    ActionMQ
    解决Session共享
    Linux中使用keepalived高可用工具解决宕机问题
    Linux安装Nginx
    Nginx基础
    多线程(1)
    单例模式1(3)
    创建型模式5种(2)
    7原则(1)
    反射使用案例(2)
  • 原文地址:https://www.cnblogs.com/xxxxxxxxx/p/11117727.html
Copyright © 2011-2022 走看看