实现一个定制的 Dataset 类
Dataset 类是 PyTorch 图像数据集中最为重要的一个类,也是 PyTorch 中所有数据集加载类中应该继承的父类。其中,父类的两个私有成员函数必须被重载。
- getitem(self, index) # 支持数据集索引的函数
- len(self) # 返回数据集的大小
Datasets 的框架:
class CustomDataset(data.Dataset): # 需要继承 data.Dataset
def __init__(self):
# TODO
# Initialize file path or list of file names.
pass
def __getitem__(self, index):
# TODO
# 1. 从文件中读取指定 index 的数据(例:使用 numpy.fromfile, PIL.Image.open)
# 2. 预处理读取的数据(例:torchvision.Transform)
# 3. 返回数据对(例:图像和对应标签)
pass
def __len__(self):
# TODO
# You should change 0 to the total size of your dataset.
return 0
举例:
class MyDataset(Dataset):
"""
root: 图像存放地址根路径
augment:是否需要图像增强
"""
def __init__(self, root, augment=None):
# 这个 list 存放所有图像的地址
self.image_files = np.array([
x.path for x in os.scandir(root)
if x.name.endswith(".jpg") or x.name.endswith(".png") or x.name.endswith(".JPG")
])
self.augment = augment
def __getitem__(self, index):
if self.augment:
image = open_image(self.image_files[index]) # 这里的 open_image 是读取图像的函数,可以用 PIL 或者 OpenCV 等库进行读取
image = self.augment(image) # 这里对图像进行了数据增强
return to_tensor(image) # PyTorch 中得到的图像必须是 tensor
else:
image = open_image(self.image_files[index])
return to_tensor(image)
下面是官方 MNIST 的例子:
class MNIST(data.Dataset):
"""`MNIST <http://yann.lecun.com/exdb/mnist/>`_ Dataset.
Args:
root (string): Root directory of dataset where ``processed/training.pt``
and ``processed/test.pt`` exist.
train (bool, optional): If True, creates dataset from ``training.pt``,
otherwise from ``test.pt``.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
urls = [
'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz',
'http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz',
]
raw_folder = 'raw'
processed_folder = 'processed'
training_file = 'training.pt'
test_file = 'test.pt'
classes = ['0 - zero', '1 - one', '2 - two', '3 - three', '4 - four',
'5 - five', '6 - six', '7 - seven', '8 - eight', '9 - nine']
class_to_idx = {_class: i for i, _class in enumerate(classes)}
@property
def targets(self):
if self.train:
return self.train_labels
else:
return self.test_labels
def __init__(self, root, train=True, transform=None, target_transform=None, download=False):
self.root = os.path.expanduser(root)
self.transform = transform
self.target_transform = target_transform
self.train = train # training set or test set
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.' +
' You can use download=True to download it')
if self.train:
self.train_data, self.train_labels = torch.load(
os.path.join(self.root, self.processed_folder, self.training_file))
else:
self.test_data, self.test_labels = torch.load(
os.path.join(self.root, self.processed_folder, self.test_file))
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
if self.train:
img, target = self.train_data[index], self.train_labels[index]
else:
img, target = self.test_data[index], self.test_labels[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
if self.train:
return len(self.train_data)
else:
return len(self.test_data)
def _check_exists(self):
return os.path.exists(os.path.join(self.root, self.processed_folder, self.training_file)) and
os.path.exists(os.path.join(self.root, self.processed_folder, self.test_file))
def download(self):
"""Download the MNIST data if it doesn't exist in processed_folder already."""
from six.moves import urllib
import gzip
if self._check_exists():
return
# download files
try:
os.makedirs(os.path.join(self.root, self.raw_folder))
os.makedirs(os.path.join(self.root, self.processed_folder))
except OSError as e:
if e.errno == errno.EEXIST:
pass
else:
raise
for url in self.urls:
print('Downloading ' + url)
data = urllib.request.urlopen(url)
filename = url.rpartition('/')[2]
file_path = os.path.join(self.root, self.raw_folder, filename)
with open(file_path, 'wb') as f:
f.write(data.read())
with open(file_path.replace('.gz', ''), 'wb') as out_f,
gzip.GzipFile(file_path) as zip_f:
out_f.write(zip_f.read())
os.unlink(file_path)
# process and save as torch files
print('Processing...')
training_set = (
read_image_file(os.path.join(self.root, self.raw_folder, 'train-images-idx3-ubyte')),
read_label_file(os.path.join(self.root, self.raw_folder, 'train-labels-idx1-ubyte'))
)
test_set = (
read_image_file(os.path.join(self.root, self.raw_folder, 't10k-images-idx3-ubyte')),
read_label_file(os.path.join(self.root, self.raw_folder, 't10k-labels-idx1-ubyte'))
)
with open(os.path.join(self.root, self.processed_folder, self.training_file), 'wb') as f:
torch.save(training_set, f)
with open(os.path.join(self.root, self.processed_folder, self.test_file), 'wb') as f:
torch.save(test_set, f)
print('Done!')
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '
'
fmt_str += ' Number of datapoints: {}
'.format(self.__len__())
tmp = 'train' if self.train is True else 'test'
fmt_str += ' Split: {}
'.format(tmp)
fmt_str += ' Root Location: {}
'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}
'.format(tmp, self.transform.__repr__().replace('
', '
' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('
', '
' + ' ' * len(tmp)))
return fmt_str