定义二叉树结构体:
typedef struct BinaryTreeNode
{
TelemType data;
struct BinaryTreeNode *Left;
struct BinaryTreeNode *Right;
}Node;
创建二叉树:
Node* createBinaryTree()
{
Node *p;
TelemType ch;
cin>>ch;
if(ch == 0) //如果到了叶子节点,接下来的左、右子树分别赋值为0
{
p = NULL;
}
else
{
p = (Node*)malloc(sizeof(Node));
p->data = ch;
p->Left = createBinaryTree(); //递归创建左子树
p->Right = createBinaryTree(); //递归创建右子树
}
return p;
}
PS:创建二叉树顺序为先中心节点,然后左子树,然后右子树,到了叶子节点后要把它的左右子树分别赋值为0。
遍历二叉树
先序遍历:
void preOrderTraverse(Node* root)
{
if( root )
{
cout<<root->data<<' ';
preOrderTraverse(root->Left);
preOrderTraverse(root->Right);
}
}
中序遍历:
void inOrderTraverse(Node* root)
{
if( root )
{
inOrderTraverse(root->Left);
cout<<root->data<<' ';
inOrderTraverse(root->Right);
}
}
后序遍历:
void lastOrderTraverse(Node* root)
{
if( root )
{
lastOrderTraverse(root->Left);
lastOrderTraverse(root->Right);
cout<<root->data<<' ';
}
}
程序代码:
#include <iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef int TelemType;
typedef struct BinaryTreeNode
{
TelemType data;
struct BinaryTreeNode *Left;
struct BinaryTreeNode *Right;
}Node;
//创建二叉树,顺序依次为中间节点->左子树->右子树
Node* createBinaryTree()
{
Node *p;
TelemType ch;
cin>>ch;
if(ch == 0) //如果到了叶子节点,接下来的左、右子树分别赋值为0
{
p = NULL;
}
else
{
p = (Node*)malloc(sizeof(Node));
p->data = ch;
p->Left = createBinaryTree(); //递归创建左子树
p->Right = createBinaryTree(); //递归创建右子树
}
return p;
}
//先序遍历
void preOrderTraverse(Node* root)
{
if( root )
{
cout<<root->data<<' ';
preOrderTraverse(root->Left);
preOrderTraverse(root->Right);
}
}
//中序遍历
void inOrderTraverse(Node* root)
{
if( root )
{
inOrderTraverse(root->Left);
cout<<root->data<<' ';
inOrderTraverse(root->Right);
}
}
//后序遍历
void lastOrderTraverse(Node* root)
{
if( root )
{
lastOrderTraverse(root->Left);
lastOrderTraverse(root->Right);
cout<<root->data<<' ';
}
}
int main()
{
Node *root = NULL;
root = createBinaryTree();
printf("
二叉树建立成功!
");
cout<<endl;
cout<<"前序遍历结果:"<<endl;
preOrderTraverse(root);
cout<<endl;
cout<<"中序遍历结果:"<<endl;
inOrderTraverse(root);
cout<<endl;
cout<<"后序遍历结果:"<<endl;
lastOrderTraverse(root);
cout<<endl;
return 0;
}
程序运行结果: