zoukankan      html  css  js  c++  java
  • 近两年内读过的书单

    今天查阅资料,随手翻阅,发现近两年内也阅读了一些技术文章,良莠都有,也算是兼容并包了。做了简短整理,罗列如下。为自己加油,为自己喝彩。

    调度优化类
    Real-world_Ride-hailing_Vehicle_Repositioning_using_Deep_Reinforcement_Learning.2021.pdf
    Scalable_Deep_Reinforcement_Learning_for_Ride-Hailing.2020.pdf
    Deep_Reinforcement_Learning_for_Ride-sharing_Dispatching_and_Repositioning.pdf
    Ride-hailing_Order_Dispatching_at_DiDi_via_Reinforcement_Learning.pdf

    游戏对抗类:
    Rethinking_of_AlphaStar.2021.pdf
    An_Introduction_of_mini-AlphaStar.2021.pdf
    Suphx_Mastering_Mahjong_with_Deep_Reinforcement_Learning.2020.pdf
    Agent57_Outperforming_the_Atari_Human_Benchmark.2020.pdf
    Mastering_Atari_Go_Chess_and_Shogi_by_Planning_with_a_Learned_Model.MuZero.2020.pdf
    Hide-and-Seek_A_Template_for_Explainable_AI.2020.pdf
    Emergent_Tool_Use_From_Multi-Agent_Autocurricula.2019.pdf
    Mastering_Chess_and_Shogi_by_Self-Play_with_a_General_Reinforcement_Learning_Algorithm.2017.pdf
    Grandmaster_level_in_StarCraft_II_using_multi-agent_reinforcement_learning.2019.pdf
    Dota_2_with_Large_Scale_Deep_Reinforcement_Learning.2019.pdf
    Long-Term_Planning_and_Situational_Awareness_in_OpenAI_Five.2019.pdf
    Mastering_Complex_Control_in_MOBA_Games_with_Deep_Reinforcement_Learning.2020.pdf
    Superhuman_AI_for_multiplayer_poker.2019.pdf
    SCC_an_Efficient_Deep_Reinforcement_Learning_Agent_Mastering_the_Game_of_StarCraft_II.2021.pdf
    Learning_to_Draft_in_MOBA_Games_with_Neural_Networks_and_Tree_Search.2021.pdf
    Towards_Playing_Full_MOBA_Games_with_Deep_Reinforcement_Learning.2020.pdf
    Learning_Diverse_Policies_in_MOBA_Games_via_Macro-Goals.2021.pdf
    DeepStack_Expert-Level_Artificial_Intelligence_in_Heads-Up_No-Limit_Poker.2017

    决策算法类
    The_Surprising_Effectiveness_of_MAPPO_in_Cooperative_Multi-Agent_Games.2021.pdf
    Multi-Agent_Actor-Critic_for_Mixed_Cooperative-Competitive_Environments.MADDPG.2020.pdf
    Addressing_Function_Approximation_Error_in_Actor-Critic_Methods.TD3.2018.pdf
    Counterfactual_Multi-Agent_Policy_Gradients.COMA.2017.pdf
    The_Reactor_A_fast_and_sample-efficient_Actor-Critic_agent_for_Reinforcement_Learning.2018.pdf
    QMIX_Monotonic_Value_Function_Factorisation_for_Deep_Multi-Agent_Reinforcement_Learning.2018.pdf
    Proximal_Policy_Gradient_PPO_with_Policy_Gradient.2020.pdf
    The_Surprising_Effectiveness_of_PPO_in_Cooperative_Multi-Agent_Games.2021

    DREAM_Deep_Regret_Minimization_with_Advantage_Baselines_and_Model-free_Learning.2020.pdf
    Solving_Imperfect-Information_Games_via_exponential_counterfactual_regret_minimization.2020.pdf
    Solving_Imperfect-Information_Games_via_Discounted_Regret_Minimization.2019.pdf
    Single_Deep_Counterfactual_Regret_Minimization.2019.pdf
    Deep_Counterfactual_Regret_Minimization.2019.pdf

    综述理论类
    On_the_Opportunities_and_Risks_of_Foundation_Models.2021.pdf
    The_Principles_of_Deep_Learning_Theory.2021.pdf
    A_Survey_on_Multi-modal_Summarization.2021.pdf
    A_Comprehensive_Survey_and_Performance_Analysis_of_Activation_Functions_in_Deep_Learning.2021.pdf
    Gathering_Strength_Gathering_Storms.AI100.2021.pdf
    Artificial_intelligence_and_life_in_2030.AI100.2016.pdf
    An_Introduction_to_Counterfactual_Regret_Minimization.2013.pdf
    A_Survey_and_Critique_of_Multiagent_Deep_Reinforcement_Learning.2019.pdf
    Pre-trained_Models_for_Natural_Language_Processing_A_Survey.2020
    Reward_is_enough.2021.pdf
    Discovering_Reinforcement_Learning_Algorithms.2021.pdf
    Pre-Trained_Models_Past_Present_and_Future.2021.pdf
    GPT_Understands_Too.2021.pdf
    Inductive_Biases_for_Deep_Learning_of_Higher-Level_Cognition.2021.pdf
    Multi-Agent_Reinforcement_Learning_A_Selective_Overview_of_Theories_and_Algorithms.2019
    Real_World_Games_Look_Like_Spinning_Tops.2020.pdf
    Time_and_Space_Why_Imperfect_Information_Games_are_Hard.2017.pdf
    Survey_of_self-play_in_reinforcement_learning.2021.pdf

    自然语言处理类
    All_NLP_Tasks_Are_Generation_Tasks_A_General_Pretraining_Framework.2021.pdf
    Language_Models_are_Few-Shot_Learners.GPT-3.2020.pdf
    Language_Models_are_Unsupervised_Multitask_Learners.GPT-2.pdf
    Improving_Language_Understanding_by_Generative_Pre-Training.GPT.pdf
    BERT.Pre-training_of_Deep_Bidirectional_Transformers_for_Language_Understanding.2019.pdf
    Unified_Language_Model_Pre-training_for_Natural_Language_Understanding_and_Generation.2019
    Attention_Is_All_You_Need.2017.pdf

    多模态相关
    CogView_Mastering_Text-to-Image_Generation_via_Transformers.2021
    Zero-Shot_Text-to-Image_Generation.DALL-E.2021.pdf
    Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.CLIP.2021.pdf
    WenLan_Bridging_Vision_and_Language_by_Large-Scale_Multi-Modal_Pre-Training.2021
    A_Chinese_Multi-Modal_Pretrainer.m6.2021.pdf

    其他
    FastMoE.a_Fast_Mixture-of-Expert_Training_System.2021.pdf
    Population_Based_Training_of_Neural_Networks.2017.pdf

  • 相关阅读:
    Linux中使用mysqldump对MySQL数据库进行定时备份
    Linux备份数据库,mysqldump命令实例详解
    laravel 怎么获取public路径
    laravel 返回值
    [Deep-Learning-with-Python]机器学习基础
    [Deep-Learning-with-Python]基于Keras的房价预测
    [Deep-Learning-with-Python]基于Kears的Reuters新闻分类
    基于Keras的imdb数据集电影评论情感二分类
    [Deep-Learning-with-Python]神经网络入手学习[上]
    [Deep-Learning-with-Python]神经网络的数学基础
  • 原文地址:https://www.cnblogs.com/xyz2abc/p/15571925.html
Copyright © 2011-2022 走看看