zoukankan      html  css  js  c++  java
  • HDU 1069 Monkey and Banana (DP)

    Monkey and Banana
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food. 

    The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. 

    They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 

    Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks. 
     

    Input

    The input file will contain one or more test cases. The first line of each test case contains an integer n, 
    representing the number of different blocks in the following data set. The maximum value for n is 30. 
    Each of the next n lines contains three integers representing the values xi, yi and zi. 
    Input is terminated by a value of zero (0) for n. 
     

    Output

    For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height". 
     

    Sample Input

    1 10 20 30 2 6 8 10 5 5 5 7 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 5 31 41 59 26 53 58 97 93 23 84 62 64 33 83 27 0
     

    Sample Output

    Case 1: maximum height = 40 Case 2: maximum height = 21 Case 3: maximum height = 28 Case 4: maximum height = 342
     

    思路:首先,每个方块的三个维度一共有3*2=6中组合,题目说最多有30个方块,所以数组应该开180以上。思路是DP数组的每个元素存的是以此方块为底的最高能摆的高度,从最顶端那个开始填表,顺便记录下最大值,最后输出最大值即可。

     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<string.h>
     4 #define    MAX    200
     5 
     6 struct    x
     7 {
     8     int    x;
     9     int    y;
    10     int    z;
    11 }DP[MAX];
    12 
    13 int    comp(const void * a,const void * b);
    14 int    main(void)
    15 {
    16     int    n,max,box,x,y,z,count;
    17     count = 0;
    18 
    19     while(scanf("%d",&n) && n)
    20     {
    21         count ++;
    22         for(int i = 0;i < 6 * n;i ++)
    23         {
    24             scanf("%d%d%d",&x,&y,&z);
    25             DP[i].x = x;
    26             DP[i].y = y;
    27             DP[i].z = z;
    28             
    29             i ++;
    30             DP[i].x = x;
    31             DP[i].y = z;
    32             DP[i].z = y;
    33 
    34             i ++;
    35             DP[i].x = z;
    36             DP[i].y = y;
    37             DP[i].z = x;
    38 
    39             i ++;
    40             DP[i].x = z;
    41             DP[i].y = x;
    42             DP[i].z = y;
    43 
    44             i ++;
    45             DP[i].x = y;
    46             DP[i].y = x;
    47             DP[i].z = z;
    48 
    49             i ++;
    50             DP[i].x = y;
    51             DP[i].y = z;
    52             DP[i].z = x;
    53         }
    54         qsort(DP,6 * n,sizeof(struct x),comp);
    55 
    56         max = DP[6 * n - 1].z;
    57         for(int i = 6 * n - 2;i >= 0;i --)
    58         {
    59             box = 0;
    60             for(int j = i + 1;j < 6 * n - 1;j ++)
    61                 if(DP[i].x > DP[j].x && DP[i].y > DP[j].y && box < DP[j].z)
    62                     box = DP[j].z;
    63             DP[i].z += box;
    64             max = max > DP[i].z ? max : DP[i].z;
    65         }
    66         printf("Case %d: maximum height = %d
    ",count,max);
    67     }
    68 
    69     return    0;
    70 }
    71 
    72 int    comp(const void * a,const void * b)
    73 {
    74     return    -(((struct x *)a) -> x - ((struct x *)b) -> x);
    75 }
     
  • 相关阅读:
    C#实现RSA加密与解密、签名与认证
    RSA公钥加密,私钥解密的程序示例
    C#中自定义属性的例子
    HTTPS简单原理介绍
    深入浅出HTTPS基本原理
    WebClient请求帮助类
    WebApi安全性 使用TOKEN+签名验证
    jsvascript === 和==的区别
    UML中的图的出现顺序
    UML从需求到实现----用例
  • 原文地址:https://www.cnblogs.com/xz816111/p/4161676.html
Copyright © 2011-2022 走看看