思路:
STEP_1:先以行为单位来算,设DP数组存的是以此位置为起点能得到的最大值,在此前提下,DP[i][j]因为相邻的不能走,所以要么加上DP[i][j + 2],要么加上DP[i][j + 3] (假设不越界),取最大的那个就好。从右往左依次计算这一行每个元素的DP值,记录下最大的,放到DP[i][0]里。
STEP_2:重复第一步,只不过对象换成了DP数组里每行0号单元的值,因为此单元放的是此行内的最大值。从上往下,每次选定一行后设此行为最终答案里最下面那行,因为选定一行之后它的上面和下面那一行就废掉了,所以每一行要么加上它上面第二行,要么加上它上面第三行。同理,记录下最大值,最大值即答案。(实际上答案不是最后一行就是倒数第二行,因为没有负数,只会越加越大,不过只有1行的时候就会越界,虽然HDU上的数据貌似没1行的)。
1 #include<stdio.h> 2 #include<stdlib.h> 3 #include<string.h> 4 #define MAX 200105 5 6 int main(void) 7 { 8 int n,m; 9 int max,temp_1,temp_2,ans; 10 11 while(scanf("%d%d",&n,&m) != EOF) 12 { 13 int dp[n + 10][m + 10]; 14 15 memset(dp,0,sizeof(dp)); 16 for(int i = 1;i <= n;i ++) 17 for(int j = 1;j <= m;j ++) 18 scanf("%d",&dp[i][j]); 19 20 for(int i = 1;i <= n;i ++) 21 { 22 max = dp[i][m]; 23 for(int j = m;j >= 1;j --) 24 { 25 dp[i][j] += dp[i][j + 2] > dp[i][j + 3] ? dp[i][j + 2] : dp[i][j + 3]; 26 max = max > dp[i][j] ? max : dp[i][j]; 27 } 28 dp[i][0] = max; 29 } 30 31 max = dp[1][0]; 32 dp[3][0] += dp[1][0]; 33 for(int i = 4;i <= n;i ++) 34 { 35 dp[i][0] += dp[i - 2][0] > dp[i - 3][0] ? dp[i - 2][0] : dp[i - 3][0]; 36 max = max > dp[i][0] ? max : dp[i][0]; 37 } 38 39 printf("%d ",max); 40 } 41 42 return 0; 43 }