zoukankan      html  css  js  c++  java
  • HDU 2845 Beans (DP)

    Beans
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1. 


    Now, how much qualities can you eat and then get ?
     

    Input

    There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
     

    Output

    For each case, you just output the MAX qualities you can eat and then get.
     

    Sample Input

    4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
     

    Sample Output

    242
     
     思路:
    STEP_1:先以行为单位来算,设DP数组存的是以此位置为起点能得到的最大值,在此前提下,DP[i][j]因为相邻的不能走,所以要么加上DP[i][j + 2],要么加上DP[i][j + 3] (假设不越界),取最大的那个就好。从右往左依次计算这一行每个元素的DP值,记录下最大的,放到DP[i][0]里。
    STEP_2:重复第一步,只不过对象换成了DP数组里每行0号单元的值,因为此单元放的是此行内的最大值。从上往下,每次选定一行后设此行为最终答案里最下面那行,因为选定一行之后它的上面和下面那一行就废掉了,所以每一行要么加上它上面第二行,要么加上它上面第三行。同理,记录下最大值,最大值即答案。(实际上答案不是最后一行就是倒数第二行,因为没有负数,只会越加越大,不过只有1行的时候就会越界,虽然HDU上的数据貌似没1行的)。
     1 #include<stdio.h>
     2 #include<stdlib.h>
     3 #include<string.h>
     4 #define    MAX    200105
     5 
     6 int    main(void)
     7 {
     8     int    n,m;
     9     int    max,temp_1,temp_2,ans;
    10 
    11     while(scanf("%d%d",&n,&m) != EOF)
    12     {
    13         int    dp[n + 10][m + 10];
    14 
    15         memset(dp,0,sizeof(dp));
    16         for(int i = 1;i <= n;i ++)
    17             for(int j = 1;j <= m;j ++)
    18                 scanf("%d",&dp[i][j]);
    19 
    20         for(int i = 1;i <= n;i ++)
    21         {
    22             max = dp[i][m];
    23             for(int j = m;j >= 1;j --)
    24             {
    25                 dp[i][j] += dp[i][j + 2] > dp[i][j + 3] ? dp[i][j + 2] : dp[i][j + 3];
    26                 max = max > dp[i][j] ? max : dp[i][j];
    27             }
    28             dp[i][0] = max;
    29         }
    30 
    31         max = dp[1][0];
    32         dp[3][0] += dp[1][0];
    33         for(int i = 4;i <= n;i ++)
    34         {
    35             dp[i][0] += dp[i - 2][0] > dp[i - 3][0] ? dp[i - 2][0] : dp[i - 3][0];
    36             max = max > dp[i][0] ? max : dp[i][0];
    37         }
    38 
    39         printf("%d
    ",max);
    40     }
    41 
    42     return    0;
    43 }
     
  • 相关阅读:
    从迷宫终点出发——Leo鉴书36
    OCP-1Z0-053-V13.02-238题
    OCP-1Z0-053-V13.02-233题
    OCP-1Z0-053-V13.02-232题
    OCP-1Z0-053-V13.02-228题
    OCP-1Z0-053-V13.02-226题
    OCP-1Z0-053-V13.02-225题
    OCP-1Z0-053-V13.02-221题
    OCP-1Z0-053-V13.02-219题
    OCP-1Z0-053-V13.02-216题
  • 原文地址:https://www.cnblogs.com/xz816111/p/4161687.html
Copyright © 2011-2022 走看看