zoukankan      html  css  js  c++  java
  • 并不对劲的p3676:小清新数据结构题

    题目大意

    有一棵有(n)((nleq 2*10^5))个点的树,要进行(q)((qleq 2*10^5))次操作,每次操作是以下两种中的一种:
    1.修改一个点的点权
    2.指定一个点(x),将该点变成根,并询问此时所有点的子树点权和之平方和

    题解

    (w_i)表示以1号点为根时,点(i)的子树点权和

    1操作可以看成将点(x)到1号点的路径上的(w)都加上(y)
    假设点(x)(1)的路径上的点是(a_1,a_2,...a_b),那么所有(w)的平方和增加了((w_{a_1}+y)^2+(w_{a_2}+y)^2+...(w_{a_b}+y)^2-(w_{a_1}^2+w_{a_2}^2+...+w{a_b}^2))
    该式=(w_{a_1}^2+2*w_{a_1}*y+y^2+w_{a_2}^2+2*w_{a_2}*y+y^2+...+w_{a_b}^2+2*w_{a_b}*y+y^2-(w_{a_1}^2+w_{a_2}^2+...+w{a_b}^2))
    =((w_{a_1}^2+w_{a_2}^2+...+w_{a_b}^2)+2*y*(w_{a_1}+w_{a_2}+...+w_{a_b})+b*y^2-(w_{a_1}^2+w_{a_2}^2+...+w{a_b}^2))
    =(2*y*(w_{a_1}+w_{a_2}+...+w_{a_b})+b*y^2)

    2操作已知所有(w)的平方和,考虑把根从1号点挪到(x),假设点(x)(1)的路径上的点是(a_1,a_2,...a_b),其中(a_1)(x)(a_b)(1)
    发现只有点(x)(1)的路径上的点的子树点权和不是(w)
    (a_i(iin[2,b]))的子树点权和是(w_{a_b}-w_{a_{i-1}})
    (a_1)的子树点权和是(w_{a_b})
    那么 所有点的子树点权和之平方和 比 所有(w)的平方和 多出了 (w_{a_b}^2+(w_{a_b}-w_{a_{1}})^2+(w_{a_b}-w_{a_{2}})^2+...+(w_{a_b}-w_{a_{b-1}})^2-(w_{a_1}^2+w_{a_2}^2+...+w_{a_b}^2))
    该式=(w_{a_b}^2+w_{a_b}^2-2*w_{a_b}*w_{a_1}+w_{a_{1}}^2+w_{a_b}^2-2*w_{a_b}*w_{a_2}+w_{a_{2}}^2+...+w_{a_b}^2-2*w_{a_b}*w_{a_{b-1}}+w_{a_{b-1}}^2-(w_{a_1}^2+w_{a_2}^2+...+w_{a_b}^2))
    =((b-1)*w_{a_b}^2-2*w_{a_b}*(w_{a_1}+...+w_{a_{b-1}})+(w_{a_1}^2+w_{a_2}^2+...+w_{a_b}^2)-(w_{a_1}^2+w_{a_2}^2+...+w_{a_b}^2))
    =((b-1)*w_{a_b}^2-2*w_{a_b}*(w_{a_1}+...+w_{a_{b-1}}))

    代码
    #include<algorithm>
    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<ctime>
    #include<iomanip>
    #include<iostream>
    #include<map>
    #include<queue>
    #include<set>
    #include<stack>
    #include<vector>
    #define rep(i,x,y) for(register int i=(x);i<=(y);++i)
    #define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
    #define maxn 200010
    #define maxm (maxn<<1)
    #define LL long long 
    #define ls (u<<1)
    #define rs (u<<1|1)
    #define mi (l+r>>1)
    #define view(u,k) for(int k=fir[u];k!=-1;k=nxt[k])
    using namespace std;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)&&ch!='-')ch=getchar();
        if(ch=='-')f=-1,ch=getchar();
        while(isdigit(ch))x=(x<<1)+(x<<3)+ch-'0',ch=getchar();
        return x*f;
    }
    void write(LL x)
    {
        if(x==0){putchar('0'),putchar('
    ');return;}
        int f=0;char ch[20];
        if(x<0)putchar('-'),x=-x;
        while(x)ch[++f]=x%10+'0',x/=10;
        while(f)putchar(ch[f--]);
        putchar('
    ');
        return;
    }
    int n,q,fir[maxn],nxt[maxm],vv[maxm],dfn[maxn],top[maxn],fa[maxn],tim,dep[maxn],siz[maxn],cnt;
    LL key[maxn],sum[maxn],sumall,son[maxn],fakeans,mk[maxn<<2],tr[maxn<<2],to[maxn];
    void ade(int u1,int v1){vv[cnt]=v1,nxt[cnt]=fir[u1],fir[u1]=cnt++;}
    void getson(int u)
    {
        siz[u]=1,sum[u]=key[u];
        view(u,k)
        {
            int v=vv[k];
            if(v==fa[u])continue;
            fa[v]=u,dep[v]=dep[u]+1,getson(v),siz[u]+=siz[v],sum[u]+=sum[v];
            if(siz[v]>siz[son[u]])son[u]=v;
        }fakeans+=sum[u]*sum[u];return;
    }
    void gettop(int u,int anc)
    {
        dfn[u]=++tim,top[u]=anc,to[tim]=u;     
        if(son[u])gettop(son[u],anc);
        view(u,k){int v=vv[k];if(v!=fa[u]&&v!=son[u])gettop(v,v);}
        return;
    }
    void pup(int u){tr[u]=tr[ls]+tr[rs];return;}
    void mkad(int u,int l,int r,int k){tr[u]+=(LL)k*(LL)(r-l+1);mk[u]+=k;return;}
    void pdn(int u,int l,int r){if(mk[u])mkad(ls,l,mi,mk[u]),mkad(rs,mi+1,r,mk[u]),mk[u]=0;}
    void build(int u,int l,int r)
    {
        if(l==r){tr[u]=sum[to[l]];return;}
        build(ls,l,mi),build(rs,mi+1,r),pup(u);
    }
    void add(int u,int l,int r,int x,int y,int k)
    {
        if(x<=l&&r<=y)return mkad(u,l,r,k);
        pdn(u,l,r);
        if(x<=mi)add(ls,l,mi,x,y,k);
        if(y>mi)add(rs,mi+1,r,x,y,k);
        return pup(u);
    }
    LL ask(int u,int l,int r,int x,int y)
    {
        if(x<=l&&r<=y)return tr[u];
        pdn(u,l,r);
        LL res=0;
        if(x<=mi)res+=ask(ls,l,mi,x,y);
        if(y>mi)res+=ask(rs,mi+1,r,x,y);
        return res;
    }
    LL askrd(int u)
    {
        LL res=0;
        while(top[u]!=1)res+=ask(1,1,n,dfn[top[u]],dfn[u]),u=fa[top[u]];
        res+=ask(1,1,n,1,dfn[u]);
        return res;
    }
    LL askrd2(int u)
    {
        LL res=0;
        while(top[u]!=1)res+=ask(1,1,n,dfn[top[u]],dfn[u]),u=fa[top[u]];
        if(u!=1)res+=ask(1,1,n,2,dfn[u]);
        return res;
    }
    void addrd(int u,int k)
    {
        while(top[u]!=1)add(1,1,n,dfn[top[u]],dfn[u],k),u=fa[top[u]];
        add(1,1,n,1,dfn[u],k);return;
    }
    int main()
    {
        n=read(),q=read();
        memset(fir,-1,sizeof(fir));
        rep(i,1,n-1){int x=read(),y=read();ade(x,y),ade(y,x);}
        rep(i,1,n)key[i]=sum[i]=read();
        getson(1),gettop(1,1),build(1,1,n);
        while(q--)
        {
            int f=read();
            if(f==1){int x=read();LL y=read();y-=key[x],key[x]+=y,fakeans+=2ll*y*askrd(x)+y*y*(dep[x]+1),addrd(x,y);}
            else{int x=read();LL tmp=ask(1,1,n,1,1);write(fakeans+dep[x]*tmp*tmp-2ll*tmp*askrd2(x));}
        }
        return 0;
    }
    
  • 相关阅读:
    poj 2533 (LIS 最长递增子序列)
    zoj 2432(最长递增上升子序列)
    hdu 1159(最长公共子序列)
    2013 腾讯马拉松初赛 第1场
    poj 1458(最长公共子序列)
    hdu 4524(水题)
    hdu 4514(自己添加栈—— #pragma comment(linker, "/STACK:102400000,102400000" ))
    MVC3安装报错解决方案
    C# 用7Z 压缩 ZIP
    获得字符串中开始和结束字符串中间得值
  • 原文地址:https://www.cnblogs.com/xzyf/p/10275472.html
Copyright © 2011-2022 走看看