题目大意
(n)个点的树,每条边上有一个小写字母。
操作:给定2个点(u),(v)((u)可能等于(v))和一个非空字符串(s),问从(u)到(v)的简单路径上的所有边按照到(u)的距离从小到大的顺序排列后,边上的字符依次拼接形成的字符串中给定的串(s)出现了多少次。
(n,mleq 10^5,sum|s|<=3 imes 10^5)
题解
离线
当(u->v)路径上的字符组成的串的子串匹配上询问串时,记(x)为(u,v)的lca,则有三种可能:1.该子串在路径(u->x)上;2.该子串经过点(x);3.该子串在路径(x->v)上。
第二种情况可以暴力kmp。因为每个询问拿出来暴力kmp的链的长度不超过询问串长度的两倍,所以暴力kmp的总时间复杂度是(Theta(sum |s|))
考虑把情况一拆成(根->u)减去(根->x)。
问题转化为如何在比较短的总时间内处理一些“根到某点的路径上出现了多少个询问串”的询问。
在普通的匹配问题中,在AC自动机上每走过一个点,这个点的fail树祖先中关键点的贡献都+1。也就是说,AC自动机上一个点(对应询问串)的贡献(对应在大串上与之匹配的串的个数)为它fail树后代中被走过的点的个数。对fail树按DFS序剖分,可以用树状数组记录一个点子树中被走过的点。
这题可以将询问离线,将询问串建AC自动机,将“根到某点(k)的路径上出现了多少个询问串”的询问放在(k)上。
树上DFS的同时在AC自动机上匹配,回溯时也要在AC自动机上消去贡献。每走到一个点,在AC自动机上计算放在这个点的询问的答案。
总时间复杂度(Theta((n+m)log space (sum|s|)))。
情况三同理。
代码
#include<algorithm>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<iostream>
#include<map>
#include<queue>
#include<stack>
#include<vector>
#define rep(i,x,y) for(register int i=(x);i<=(y);++i)
#define dwn(i,x,y) for(register int i=(x);i>=(y);--i)
#define re register
#define maxn 100010
#define maxm 200010
#define maxl 300010
#define cx(c) (c-'a')
#define xc(x) (x+'a')
using namespace std;
inline int read()
{
int x=0,f=1;
char ch=getchar();
while(isdigit(ch)==0 && ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(int x)
{
int f=0;char ch[20];
if(!x){puts("0");return;}
if(x<0){putchar('-');x=-x;}
while(x)ch[++f]=x%10+'0',x/=10;
while(f)putchar(ch[f--]);
putchar('
');
}
int v[maxm],nxt[maxm],w[maxm],fir[maxn],tofa[maxn],cnte,kmps[maxl],kmpS[maxn];
int mk[maxm][2],lca[maxm],ans[maxm],anc[maxn][18],dep[maxn],kmpf[maxl];
int n,q;
typedef struct que{int fh,nd,id,tp;}qs;
qs makeq(int a1,int a2,int a3,int a4){qs tmp;tmp.fh=a1,tmp.nd=a2,tmp.id=a3,tmp.tp=a4;return tmp;}
vector<qs>Q[maxn];
void ade(int u1,int v1,int w1){v[cnte]=v1,w[cnte]=w1,nxt[cnte]=fir[u1],fir[u1]=cnte++;}
struct AC
{
int ch[maxl][26],tr[maxl],dfn[maxl],cntnd,fa[maxl];
int fir[maxl],nxt[maxl],v[maxl],cnte,tim,siz[maxl];
char s[maxl];
queue<int>q;
void ade(int u1,int v1){v[cnte]=v1,nxt[cnte]=fir[u1],fir[u1]=cnte++;}
int extend(int len)
{
int u=0;
rep(i,1,len)
{
if(!ch[u][cx(s[i])])ch[u][cx(s[i])]=++cntnd;
u=ch[u][cx(s[i])];
}
return u;
}
void getfa()
{
rep(i,0,25)if(ch[0][i])q.push(ch[0][i]),fa[ch[0][i]]=0;
while(!q.empty())
{
int u=q.front();q.pop();
rep(i,0,25)
{
if(!ch[u][i])ch[u][i]=ch[fa[u]][i];
else fa[ch[u][i]]=ch[fa[u]][i],q.push(ch[u][i]);
}
}
rep(i,1,cntnd)ade(fa[i],i);
}
void getdf(int u){dfn[u]=++tim;siz[u]=1;for(int k=fir[u];k!=-1;k=nxt[k])getdf(v[k]),siz[u]+=siz[v[k]];}
inline int lt(int x){return x&(-x);}
void add(int x,int k){for(;x<=tim;x+=lt(x))tr[x]+=k;}
int ask(int x){int k=0;for(;x;x-=lt(x))k+=tr[x];return k;}
int query(int u){return ask(dfn[u]+siz[u]-1)-ask(dfn[u]-1);}
}t[2];
void getf(int u)
{
rep(i,1,17)anc[u][i]=anc[anc[u][i-1]][i-1];
for(int k=fir[u];k!=-1;k=nxt[k])
{
if(v[k]!=anc[u][0])
{
anc[v[k]][0]=u,dep[v[k]]=dep[u]+1,tofa[v[k]]=w[k];
getf(v[k]);
}
}
}
int Lca(int x,int y)
{
if(dep[y]>dep[x])swap(x,y);
dwn(i,17,0)if(dep[anc[x][i]]>=dep[y]&&anc[x][i])x=anc[x][i];
if(x==y)return x;
dwn(i,17,0)if(anc[x][i]!=anc[y][i])x=anc[x][i],y=anc[y][i];
return anc[x][0];
}
int getkmp(int id,int len,int nd0,int nd1)
{
int Len=min(dep[mk[id][0]]-dep[lca[id]],len-1)+min(dep[mk[id][1]]-dep[lca[id]],len-1);
int x[2],hd=0,tl=Len,nds[2];nds[0]=nd0,nds[1]=nd1;
rep(i,0,1){x[i]=mk[id][i];dwn(j,17,0)if(dep[anc[x[i]][j]]-dep[lca[id]]>=len-1&&anc[x[i]][j])x[i]=anc[x[i]][j];}
rep(i,0,1)if(dep[mk[id][i]]-dep[lca[id]]>=len)Q[x[i]].push_back(makeq(-1,nds[i],id,i));
while(x[0]!=lca[id])kmpS[tl--]=tofa[x[0]],x[0]=anc[x[0]][0];
while(x[1]!=lca[id])kmpS[++hd]=tofa[x[1]],x[1]=anc[x[1]][0];
return Len;
}
int fa[maxn];
int kmp(int len,int Len)
{
fa[1]=0;int hd=0;
if(len>Len){rep(i,1,len)kmps[i]=0;return 0;}
rep(i,1,len-1)
{
while(hd&&kmps[i+1]!=kmps[hd+1])hd=fa[hd];
if(kmps[i+1]!=kmps[hd+1])fa[i+1]=hd;
else fa[i+1]=++hd;
}
int u=0,res=0;
rep(i,1,Len)
{
while(kmps[u+1]!=kmpS[i]&&u)u=fa[u];
if(kmps[u+1]!=kmpS[i])u=0;
else u++;
res+=(u==len);
}
rep(i,1,len)kmps[i]=fa[i]=0;
return res;
}
void getans(int u,int nd0,int nd1)
{
int nd[2],lim=Q[u].size();nd[0]=nd0,nd[1]=nd1;
rep(i,0,lim-1)ans[Q[u][i].id]+=Q[u][i].fh* t[Q[u][i].tp].query(Q[u][i].nd);
for(int k=fir[u];k!=-1;k=nxt[k])
{
if(v[k]!=anc[u][0])
{
rep(i,0,1)t[i].add(t[i].dfn[t[i].ch[nd[i]][w[k]]],1);
getans(v[k],t[0].ch[nd0][w[k]],t[1].ch[nd1][w[k]]);
rep(i,0,1)t[i].add(t[i].dfn[t[i].ch[nd[i]][w[k]]],-1);
}
}
}
int main()
{
n=read(),q=read();
memset(fir,-1,sizeof(fir));
rep(i,0,1)memset(t[i].fir,-1,sizeof(t[i].fir));
rep(i,1,n-1)
{
int x=read(),y=read();char c=getchar();
ade(x,y,cx(c)),ade(y,x,cx(c));
}
getf(1);
rep(i,1,q)
{
mk[i][1]=read(),mk[i][0]=read();scanf("%s",t[0].s+1);
if(mk[i][1]==mk[i][0]){ans[i]=0;continue;}
lca[i]=Lca(mk[i][0],mk[i][1]);
int len=strlen(t[0].s+1),nd[2];
rep(j,1,len)t[1].s[j]=t[0].s[len-j+1],kmps[j]=cx(t[0].s[j]);
rep(j,0,1){if(dep[mk[i][j]]-dep[lca[i]]>=len)nd[j]=t[j].extend(len),Q[mk[i][j]].push_back(makeq(1,nd[j],i,j));}
ans[i]=kmp(len,getkmp(i,len,nd[0],nd[1]));
}
rep(i,0,1)t[i].getfa(),t[i].getdf(0);
getans(1,0,0);
rep(i,1,q)write(ans[i]);
return 0;
}
在线
很遗憾,并不对劲的人在还有资源的时候太菜了。
一些感想
(想到)在线做法(的人)太强了!