zoukankan      html  css  js  c++  java
  • BZOJ3626 [LNOI2014]LCA

    Description

    (n)个点的树,(q)个询问,每个询问给出(l,r,x),求(sum_{i=l}^r dep_{lca(i, x)})。根的深度是(1)(n, qleq 50000)

    Solution

    树剖?啥?能吃吗?

    分块大法好!

    将节点(按编号)每(S)个分一块,预处理出(f_{i,j}=sum_{xin block_i}dep_{lca(x,j)}),可以每个块dfs一遍。

    然后对(j)这一维搞一个前缀和;再dfs一遍求dfs序(那种用来RMQ求LCA的),预处理ST表以(O(1))LCA。

    然后查询时整块直接前缀和相减;块内(O(S))查询。

    总时间复杂度(O(frac{n^2}S+qS))(S)(frac n{sqrt q})时最小,为(O(nsqrt q))

    Code

    #include <algorithm>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    const int N = 50050;
    const int B = 300;
    const int mod = 201314;
    int ls[N], rb[N], pos[N], minv[20][N * 2], min2[N * 2];
    int fa[N], n, cnt = 0;
    void dfs0(int x, int d) {
      minv[0][pos[x] = cnt++] = d;
      for (int i = ls[x]; i; i = rb[i]) {
        dfs0(i, d + 1);
        if (rb[i]) minv[0][cnt++] = d;
      }
    }
    void work() {
      for (int i = 0, k = 1; k < cnt; ++i, k <<= 1) {
        for (int j = 0; j + k <= cnt; ++j)
          minv[i + 1][j] = std::min(minv[i][j], minv[i][j + k]);
        for (int j = k; j < (k << 1); ++j) min2[j] = i;
      }
    }
    int d(int x, int y) {
      x = pos[x]; y = pos[y];
      if (x > y) std::swap(x, y);
      int k = min2[y - x + 1];
      return std::min(minv[k][x], minv[k][y - (1 << k) + 1]);
    }
    int siz[N];
    int dfs1(int x, int b) {
      siz[x] = (x / B == b);
      for (int i = ls[x]; i; i = rb[i]) siz[x] += dfs1(i, b);
      return siz[x];
    }
    int ans[N / B + 2][N];
    void dfs2(int x, int b, int v) {
      ans[b][x] = ((v += siz[x]) %= mod) + (b ? ans[b - 1][x] : 0);
      if (ans[b][x] > mod) ans[b][x] -= mod;
      for (int i = ls[x]; i; i = rb[i]) dfs2(i, b, v);
    }
    int main() {
      int q;
      scanf("%d%d", &n, &q);
      memset(fa, -1, sizeof fa);
      for (int i = 1; i < n; ++i) {
        scanf("%d", &fa[i]);
        rb[i] = ls[fa[i]]; ls[fa[i]] = i;
      }
      dfs0(0, 1);
      work();
      for (int b = 0; b * B < n; ++b) { dfs1(0, b); dfs2(0, b, 0); }
      for (int l, r, x; q; --q) {
        scanf("%d%d%d", &l, &r, &x);
        int lb = (l + B - 1) / B, rb = r / B;
        long long ansv = 0;
        if (lb <= rb) {
          ansv = (ans[rb - 1][x] - (lb ? ans[lb - 1][x] : 0) + mod) % mod;
          for (int i = l; i < lb * B; ++i) ansv += d(i, x);
          for (int i = rb * B; i <= r; ++i) ansv += d(i, x);
        } else
          for (int i = l; i <= r; ++i) ansv += d(i, x);
        printf("%d
    ", (int)(ansv % mod));
      }
      return 0;
    }
    
  • 相关阅读:
    单例模式的七种写法
    Android省电开发 浅析
    android省电开发之cpu降频
    什么是签名、为什么要给应用程序签名、如何给应用程序签名
    内存溢出和内存泄漏的区别、产生原因以及解决方案
    Android Studio 使用GitHub
    sharesdk 的使用
    当ViewPager嵌套在ScrollView/ListView里时,手势冲突如何处理?
    laravel安装笔记
    erlang的一些小技巧(不定期更新)
  • 原文地址:https://www.cnblogs.com/y-clever/p/8512819.html
Copyright © 2011-2022 走看看