zoukankan      html  css  js  c++  java
  • poj 3268 Silver Cow Party(最短路dijkstra)

    描述:

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input
    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
    Output
    Line 1: One integer: the maximum of time any one cow must walk.
    Sample Input
    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3
    Sample Output
    10
    Hint
    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
     

    题解:

      要求的其实就是1-n的每个点到x以及从x回来的最短路之和的最大值。就可以用两次dijkstra算法求解,一次算从i到x,一次算从x到i,最后求得相加的最大值即可。

    代码:

    #include <iostream>
    #include <stdio.h>
    
    using namespace std;
    #define inf 1<<29
    int n,m,x;
    bool vis[1010];
    int map[1010][1010];
    int go[1010],dback[1010];  //go是从i—>x  back是从x—>i
    
    int dijkstra()
    {
        int i,j,f,v;
        for(i=1;i<=n;i++)
        {
            vis[i]=0;
            go[i]=map[i][x];
            dback[i]=map[x][i];
        }
    
        for(i=1;i<=n;i++)
        {
            f=inf;
            for(j=1;j<=n;j++)
            {
                if(!vis[j]&&dback[j]<f)
                {
                    v=j;
                    f=dback[j];
                }
            }
            vis[v]=1;
            for(j=1;j<=n;j++)
                if(!vis[j]&&map[v][j]+dback[v]<dback[j])
                    dback[j]=map[v][j]+dback[v];
        }
    
        for(i=1;i<=n;i++) vis[i]=0;
    
        for(i=1;i<=n;i++)
        {
            f=inf;
            for(j=1;j<=n;j++)
            {
                if(!vis[j]&&go[j]<f)
                {
                    v=j;
                    f=go[j];
                }
            }
            vis[v]=1;
            for(j=1;j<=n;j++)
            {
                if(!vis[j]&&map[j][v]+go[v]<go[j])
                    go[j]=map[j][v]+go[v];
            }
        }
    
        f=-1;
        for(i=1;i<=n;i++)
        {
            if(go[i]+dback[i]>f)
                f=go[i]+dback[i];
        }
        return f;
    }
    
    int main()
    {
        int a,b,c;
        while(~scanf("%d%d%d",&n,&m,&x)){
            for(int i=1;i<=n;i++)
                for(int j=1;j<=n;j++)
                {
                    if(i!=j) map[i][j]=inf;
                    else map[i][j]=0;
                }
            for(int i=0;i<m;i++)
            {
                scanf("%d%d%d",&a,&b,&c);
                map[a][b]=c;
            }
            printf("%d
    ",dijkstra());
        }
        return 0;
    }
     
     
  • 相关阅读:
    自测项目:批量删除云盘重复文件
    表格更新成本 二 问用户年龄和口令,直到他们提供有效的输入
    知乎抓取、写入文档
    倒打印心
    HDU 1102 Constructing Roads
    C++模板:字典树
    HDU 3015 Disharmony Trees
    HDU 2227 Find the nondecreasing subsequences
    HDU 3486 Interviewe
    C++模板:ST算法
  • 原文地址:https://www.cnblogs.com/y1040511302/p/10466583.html
Copyright © 2011-2022 走看看