zoukankan      html  css  js  c++  java
  • CodeForces#275--DIV 2--A

    A. Counterexample
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Your friend has recently learned about coprime numbers. A pair of numbers {a, b} is called coprime if the maximum number that divides both a and b is equal to one.

    Your friend often comes up with different statements. He has recently supposed that if the pair (a, b) is coprime and the pair (b, c) is coprime, then the pair (a, c) is coprime.

    You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (a, b, c), for which the statement is false, and the numbers meet the condition l ≤ a < b < c ≤ r.

    More specifically, you need to find three numbers (a, b, c), such that l ≤ a < b < c ≤ r, pairs (a, b) and (b, c) are coprime, and pair(a, c) is not coprime.

    Input

    The single line contains two positive space-separated integers lr (1 ≤ l ≤ r ≤ 1018; r - l ≤ 50).

    Output

    Print three positive space-separated integers abc — three distinct numbers (a, b, c) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.

    If the counterexample does not exist, print the single number -1.

    Sample test(s)
    input
    2 4
    output
    2 3 4
    input
    10 11
    output
    -1
    input
    900000000000000009 900000000000000029
    output
    900000000000000009 900000000000000010 900000000000000021
    Note

    In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.

    In the second sample you cannot form a group of three distinct integers, so the answer is -1.

    In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    
    using namespace std;
    
    long long gcd(long long x, long long y)
    {
        if(!x || !y)    return x > y ? x : y;
    
        for(long long  t; t = x%y; x = y, y = t);
    
        return y;
    }
    
    long long kgcd(long long a, long long b)
    {
        if(a < b)
            swap(a, b);
        if(a == 0)  return b;
    
        if(b == 0)  return a;
    
        if(!(a&1) && !(b&1))
            return kgcd(a>>1, b>>1) << 1;
        else if(!(b & 1))
            return kgcd(a, b>>1);
        else if(! (a & 1))
            return  kgcd(a>>1, b);
        else
            return kgcd(b, a - b);
    }
    
    int main()
    {
        long long l, r;
        while(cin >> l >> r)
        {
            long long a, b, c;
            bool tag = false;
            ///暴力枚举
            for(a = l; a < r; a++)
            {
                for(b = a + 1; b < r; b++)
                {
                    for(c = b + 1; c <= r; c++)
                    {
                        if(kgcd(a, c) != 1 && kgcd(a, b) == 1 && kgcd(b, c) == 1)
                        {
                            tag = true;
                            cout << a << " " << b << " " << c << endl;
                            break;
                        }
                    }
                    if(tag == true)
                        break;
                }
                if(tag == true)
                    break;
            }
    
            if(tag == false)
                cout << -1 << endl;
        }
    
        return 0;
    }
    

      试着又复习了下GCD KGCD

  • 相关阅读:
    8月份的To-Do List
    Block作为返回值时的使用
    Block作为参数时的使用
    AFNetwork 作用和用法详解
    UIScrollView监听静止的数种情况
    UIAppearance
    自定义Log实现条件编译
    事件的基本概念
    ubuntu16.04下安装MySQL
    在Ubuntu16.04下搭建samba,实现linux与windows之间的资源共享
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/4049663.html
Copyright © 2011-2022 走看看