zoukankan      html  css  js  c++  java
  • CodeForces#275--DIV 2--A

    A. Counterexample
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Your friend has recently learned about coprime numbers. A pair of numbers {a, b} is called coprime if the maximum number that divides both a and b is equal to one.

    Your friend often comes up with different statements. He has recently supposed that if the pair (a, b) is coprime and the pair (b, c) is coprime, then the pair (a, c) is coprime.

    You want to find a counterexample for your friend's statement. Therefore, your task is to find three distinct numbers (a, b, c), for which the statement is false, and the numbers meet the condition l ≤ a < b < c ≤ r.

    More specifically, you need to find three numbers (a, b, c), such that l ≤ a < b < c ≤ r, pairs (a, b) and (b, c) are coprime, and pair(a, c) is not coprime.

    Input

    The single line contains two positive space-separated integers lr (1 ≤ l ≤ r ≤ 1018; r - l ≤ 50).

    Output

    Print three positive space-separated integers abc — three distinct numbers (a, b, c) that form the counterexample. If there are several solutions, you are allowed to print any of them. The numbers must be printed in ascending order.

    If the counterexample does not exist, print the single number -1.

    Sample test(s)
    input
    2 4
    output
    2 3 4
    input
    10 11
    output
    -1
    input
    900000000000000009 900000000000000029
    output
    900000000000000009 900000000000000010 900000000000000021
    Note

    In the first sample pair (2, 4) is not coprime and pairs (2, 3) and (3, 4) are.

    In the second sample you cannot form a group of three distinct integers, so the answer is -1.

    In the third sample it is easy to see that numbers 900000000000000009 and 900000000000000021 are divisible by three.

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <cstdio>
    
    using namespace std;
    
    long long gcd(long long x, long long y)
    {
        if(!x || !y)    return x > y ? x : y;
    
        for(long long  t; t = x%y; x = y, y = t);
    
        return y;
    }
    
    long long kgcd(long long a, long long b)
    {
        if(a < b)
            swap(a, b);
        if(a == 0)  return b;
    
        if(b == 0)  return a;
    
        if(!(a&1) && !(b&1))
            return kgcd(a>>1, b>>1) << 1;
        else if(!(b & 1))
            return kgcd(a, b>>1);
        else if(! (a & 1))
            return  kgcd(a>>1, b);
        else
            return kgcd(b, a - b);
    }
    
    int main()
    {
        long long l, r;
        while(cin >> l >> r)
        {
            long long a, b, c;
            bool tag = false;
            ///暴力枚举
            for(a = l; a < r; a++)
            {
                for(b = a + 1; b < r; b++)
                {
                    for(c = b + 1; c <= r; c++)
                    {
                        if(kgcd(a, c) != 1 && kgcd(a, b) == 1 && kgcd(b, c) == 1)
                        {
                            tag = true;
                            cout << a << " " << b << " " << c << endl;
                            break;
                        }
                    }
                    if(tag == true)
                        break;
                }
                if(tag == true)
                    break;
            }
    
            if(tag == false)
                cout << -1 << endl;
        }
    
        return 0;
    }
    

      试着又复习了下GCD KGCD

  • 相关阅读:
    shell命令运行符号&、;、&&区别
    绕过CDN查看真实IP的有效方法
    kali Linux各历史版本
    Referer详解
    HttpServletResponse详解
    XML中保留字符及实体引用
    PreparedStatement用法详解
    Abnormal build process termination IDEA启动报错
    解决stackOverflow打开慢的问题
    git报错---If no other git process is currently running...
  • 原文地址:https://www.cnblogs.com/ya-cpp/p/4049663.html
Copyright © 2011-2022 走看看