zoukankan      html  css  js  c++  java
  • 18.1.5 POJ 3264 Balanced Lineup

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    USACO 2007 January Silver
     1 #include <iostream>
     2 #include <string.h>
     3 #include <algorithm>
     4 #include <stack>
     5 #include <string>
     6 #include <math.h>
     7 #include <queue>
     8 #include <stdio.h>
     9 #include <string.h>
    10 #include <set>
    11 #include <vector>
    12 #define maxn 50005
    13 #define inf 999999
    14 #define EPS 1e-10
    15 #define lowbit(x) (int)(x&(-x))
    16 using namespace std;
    17 
    18 struct node {
    19     int l, r;
    20     int max, min;
    21 }tree[maxn<<2];
    22 int n, m;
    23 int a[maxn];
    24 
    25 void build(int rt, int l, int r) {
    26     int mid = (l + r) / 2;
    27     tree[rt].l = l, tree[rt].r = r;
    28     if (l == r) {
    29         tree[rt].max = a[l];
    30         tree[rt].min = a[l];
    31         return;
    32     }
    33     build(2 * rt, l, mid), build(2 * rt + 1, mid + 1, r);
    34     int maxv = max(tree[2 * rt].max, tree[2 * rt + 1].max);
    35     int minv = min(tree[2 * rt].min, tree[2 * rt + 1].min);
    36     tree[rt].max = maxv, tree[rt].min = minv;
    37 }
    38 
    39 pair<int,int> query(int rt, int l, int r) {
    40     int ll = tree[rt].l, rr = tree[rt].r;
    41     int mid = (ll + rr) / 2;
    42     if (ll == l && rr == r) 
    43         return pair<int,int>(tree[rt].max,tree[rt].min);
    44     if (r <= mid)
    45         return query(rt * 2, l, r);
    46     else if (l > mid)
    47         return query(rt * 2 + 1, l, r);
    48     pair<int, int> ret1=query(rt*2,l,mid), ret2=query(rt*2+1,mid+1,r);
    49     int maxv = max(ret1.first, ret2.first);
    50     int minv = min(ret1.second, ret2.second);
    51     return pair<int, int>(maxv, minv);
    52 }
    53 
    54 void init() {
    55     scanf("%d%d", &n, &m);
    56     for (int i = 1; i <= n; i++)
    57         scanf("%d", &a[i]);
    58     build(1, 1, n);
    59     for (int i = 1; i <= m; i++) {
    60         int x, y;
    61         scanf("%d%d", &x, &y);
    62         pair<int, int>ans = query(1, x, y);
    63         printf("%d
    ", ans.first - ans.second);
    64     }
    65 }
    66 
    67 int main() {
    68     init();
    69     return 0;
    70 }
    View Code
    注定失败的战争,也要拼尽全力去打赢它; 就算输,也要输得足够漂亮。
  • 相关阅读:
    0149-函数可以做参数.abb
    0139-文件操作之二进制方式打开模式(一).abb
    0138-文件操作之基本打开模式.abb
    0130-实例之python实现随机验证码.abb
    0127-python内置函数(一).abb
    0126-lambda表达式.abb
    0113-全局变量和局部变量.abb
    函数的动态参数
    0103-深浅拷贝.abb
    0102-不同数据类型在内存中的存址方式
  • 原文地址:https://www.cnblogs.com/yalphait/p/10226311.html
Copyright © 2011-2022 走看看