zoukankan      html  css  js  c++  java
  • 机器学习实践01

    今天我主要观看了机器学习第一章的视频,并跟随老师讲解完成了预测波士顿房价的代码的模仿编写

    首先我了解了人工智能、机器学习、深度学习的历史和基本应用,然后我学习了机器学习的三种方式:有监督学习、无监督学习、强化学习

    有监督学习是带标签的,无监督学习不带标签,强化学习通过奖励或者正反馈给予标签

    然后我了解了有监督学习中样本标签为线性中的概念,包括训练集、测试集、模型、损失函数、优化目标

    在有监督学习中样本标签为离散型的主要是分类,例如决策树对贷款违约的预测,即对人进行分类,贷款违约和贷款未违约

    然后我学习了一些关于机器学习的工具和库,主要工具当然是python,其中比较重要的库有numpy、pandas、sklearn

    我随后学习了sklearn的应用过程,主要是先对数据进行转换,然后用模型训练,最后用测试数据进行模型预测

    最后学习了一个预测波士顿房价的实例,其中主要应用sklearn过程是

    首先导入工具包,然后加载数据,然后训练集测试集划分,再然后模型构建与拟合,最后是模型预测与评价

    以上就是我今天主要学习的内容

  • 相关阅读:
    HDU1506 Largest Rectangle in a Histogram(算竞进阶习题)
    洛谷P1073 最优贸易
    CH2101 可达性统计(算竞进阶习题)
    BZOJ1012 最大数maxnumber
    POJ 3764 The XOR Longest Path
    洛谷P4513 小白逛公园
    外边距叠加问题
    读JS高性能总结——DOM编程(一)
    DOM修改元素的方法总结
    DOM查找元素的方法总结
  • 原文地址:https://www.cnblogs.com/yang2000/p/14530865.html
Copyright © 2011-2022 走看看