zoukankan      html  css  js  c++  java
  • pytorch torchsummary 显示每层大小

    https://github.com/sksq96/pytorch-summary

    安装

    pip install torchsummary
    

    使用

    from torchsummary import summary
    summary(your_model, input_size=(channels, H, W))
    

    例子:

    import torch
    from torchvision import models
    from torchsummary import summary
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    vgg = models.vgg16().to(device)
    
    summary(vgg, (3, 224, 224))
    

    显示如下:

    ----------------------------------------------------------------
            Layer (type)               Output Shape         Param #
    ================================================================
                Conv2d-1         [-1, 64, 224, 224]           1,792
                  ReLU-2         [-1, 64, 224, 224]               0
                Conv2d-3         [-1, 64, 224, 224]          36,928
                  ReLU-4         [-1, 64, 224, 224]               0
             MaxPool2d-5         [-1, 64, 112, 112]               0
                Conv2d-6        [-1, 128, 112, 112]          73,856
                  ReLU-7        [-1, 128, 112, 112]               0
                Conv2d-8        [-1, 128, 112, 112]         147,584
                  ReLU-9        [-1, 128, 112, 112]               0
            MaxPool2d-10          [-1, 128, 56, 56]               0
               Conv2d-11          [-1, 256, 56, 56]         295,168
                 ReLU-12          [-1, 256, 56, 56]               0
               Conv2d-13          [-1, 256, 56, 56]         590,080
                 ReLU-14          [-1, 256, 56, 56]               0
               Conv2d-15          [-1, 256, 56, 56]         590,080
                 ReLU-16          [-1, 256, 56, 56]               0
            MaxPool2d-17          [-1, 256, 28, 28]               0
               Conv2d-18          [-1, 512, 28, 28]       1,180,160
                 ReLU-19          [-1, 512, 28, 28]               0
               Conv2d-20          [-1, 512, 28, 28]       2,359,808
                 ReLU-21          [-1, 512, 28, 28]               0
               Conv2d-22          [-1, 512, 28, 28]       2,359,808
                 ReLU-23          [-1, 512, 28, 28]               0
            MaxPool2d-24          [-1, 512, 14, 14]               0
               Conv2d-25          [-1, 512, 14, 14]       2,359,808
                 ReLU-26          [-1, 512, 14, 14]               0
               Conv2d-27          [-1, 512, 14, 14]       2,359,808
                 ReLU-28          [-1, 512, 14, 14]               0
               Conv2d-29          [-1, 512, 14, 14]       2,359,808
                 ReLU-30          [-1, 512, 14, 14]               0
            MaxPool2d-31            [-1, 512, 7, 7]               0
               Linear-32                 [-1, 4096]     102,764,544
                 ReLU-33                 [-1, 4096]               0
              Dropout-34                 [-1, 4096]               0
               Linear-35                 [-1, 4096]      16,781,312
                 ReLU-36                 [-1, 4096]               0
              Dropout-37                 [-1, 4096]               0
               Linear-38                 [-1, 1000]       4,097,000
    ================================================================
    Total params: 138,357,544
    Trainable params: 138,357,544
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.57
    Forward/backward pass size (MB): 218.59
    Params size (MB): 527.79
    Estimated Total Size (MB): 746.96
    ----------------------------------------------------------------
    
    
    好记性不如烂键盘---点滴、积累、进步!
  • 相关阅读:
    大数模板(Java)
    HDU 2473 Junk-Mail Filter 【并查集删除】
    Codeforces 868A Bark to Unlock【字符串+二维string输入输出+特判】
    HDU 1280 前m大的数【排序 / hash】
    马拉车模板
    51nod 1137 矩阵乘法【矩阵】
    51nod 1183 编辑距离【线性dp+类似最长公共子序列】
    RMQ问题心得
    逆序数多种求法
    位运算心得
  • 原文地址:https://www.cnblogs.com/yanghailin/p/14869947.html
Copyright © 2011-2022 走看看