zoukankan      html  css  js  c++  java
  • 如何用 GPU 训练模型?

    包括两步:

        1)Convert parameters and buffers of all modules to CUDA Tensor.

        2)Send the inputs and targets at every step to the GPU.

    注意:模型和数据要迁移到同一块显卡上。

    举个例子:

    import torch
    from torchvision import transforms
    from torchvision import datasets
    from torch.utils.data import DataLoader
    import torch.nn.functional as F
    import torch.optim as optim
    
    #==============================================================================
    # prepare dataset
     
    batch_size = 64
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
     
    train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
    test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
    test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
     
    #==============================================================================
    # design model using class
    
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
            self.pooling = torch.nn.MaxPool2d(2)
            self.fc = torch.nn.Linear(320, 10)
     
        def forward(self, x):
            # flatten data from (n,1,28,28) to (n, 784)
            batch_size = x.size(0)
            x = F.relu(self.pooling(self.conv1(x)))
            x = F.relu(self.pooling(self.conv2(x)))
            x = x.view(batch_size, -1) # -1 此处自动算出的是320
            x = self.fc(x)
            return x
     
    model = Net()
    # 把所建立的模型全部迁移到 GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model.to(device)
    
    #==============================================================================
    # construct loss and optimizer
    
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
     
    #==============================================================================
    # training cycle forward, backward, update
     
    def train(epoch):
        running_loss = 0.0
        for batch_idx, data in enumerate(train_loader, 0):
            inputs, target = data
            # 将输入、输出迁移到 GPU
            inputs, target = inputs.to(device), target.to(device)
            optimizer.zero_grad()
     
            outputs = model(inputs)
            loss = criterion(outputs, target)
            loss.backward()
            optimizer.step()
     
            running_loss += loss.item()
            if batch_idx % 300 == 299:
                print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
                running_loss = 0.0
    
    #==============================================================================
    # test
     
    def test():
        correct = 0
        total = 0
        with torch.no_grad():
            for data in test_loader:
                inputs, labels = data
                inputs, target = inputs.to(device), target.to(device)
                outputs = model(inputs)
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        print('accuracy on test set: %d %% ' % (100 * correct / total))
     
    if __name__ == '__main__':
        for epoch in range(10):
            train(epoch)
            test()
    

    下面我们改进一下代码用一个更复杂的卷积神经网络来训练,首先定义一个如下的网络结构:

         

    这个网络就是包含了各种尺寸的卷积核,因为我们并不知道哪种合适所以就都放在一起,训练的时候,合适的卷积核对应的值就会变大。代码如下:

    class InceptionA(nn.Module):
        def __init__(self, in_channels):
            super(InceptionA, self).__init__()
            self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
    
            self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
     
            self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
            self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
     
            self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
            self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
            self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
     
        def forward(self, x):
        	branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
            branch_pool = self.branch_pool(branch_pool)
    
            branch1x1 = self.branch1x1(x)
     
            branch5x5 = self.branch5x5_1(x)
            branch5x5 = self.branch5x5_2(branch5x5)
     
            branch3x3 = self.branch3x3_1(x)
            branch3x3 = self.branch3x3_2(branch3x3)
            branch3x3 = self.branch3x3_3(branch3x3)
     
            outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
            return torch.cat(outputs, dim=1) # b,c,w,h  c 对应的是 dim=1
    

    把这个网络加到我们之前设计的模型中,整体代码如下:

    import torch
    from torchvision import transforms
    from torchvision import datasets
    from torch.utils.data import DataLoader
    import torch.nn.functional as F
    import torch.optim as optim
     
    #==============================================================================
    # prepare dataset
     
    batch_size = 64
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
     
    train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
    test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
    test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
    
    #==============================================================================
    # design model using class
     
    class Net(torch.nn.Module):
        def __init__(self):
            super(Net, self).__init__()
            self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
            self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16
     
            self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应
            self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应
     
            self.pooling = torch.nn.MaxPool2d(2)
            self.fc = torch.nn.Linear(1408, 10) 
     
        def forward(self, x):
            batch_size = x.size(0)
            x = F.relu(self.pooling(self.conv1(x)))
            x = self.incep1(x)
            x = F.relu(self.pooling(self.conv2(x)))
            x = self.incep2(x)
            x = x.view(batch_size, -1)
            x = self.fc(x)
     
            return x
     
    model = Net()
    # 把所建立的模型全部迁移到 GPU
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model.to(device)
     
    #==============================================================================
    # construct loss and optimizer
    criterion = torch.nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
     
    #==============================================================================
    # training cycle forward, backward, update
    
    def train(epoch):
        running_loss = 0.0
        for batch_idx, data in enumerate(train_loader, 0):
            inputs, target = data
            # 将输入、输出迁移到 GPU
            inputs, target = inputs.to(device), target.to(device)
            optimizer.zero_grad()
     
            outputs = model(inputs)
            loss = criterion(outputs, target)
            loss.backward()
            optimizer.step()
     
            running_loss += loss.item()
            if batch_idx % 300 == 299:
                print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))
                running_loss = 0.0
    
    #==============================================================================
    # test
    
    def test():
        correct = 0
        total = 0
        with torch.no_grad():
            for data in test_loader:
                inputs, labels = data
                inputs, target = inputs.to(device), target.to(device)
                outputs = model(inputs)
                _, predicted = torch.max(outputs.data, dim=1)
                total += labels.size(0)
                correct += (predicted == labels).sum().item()
        print('accuracy on test set: %d %% ' % (100*correct/total))
     
     
    if __name__ == '__main__':
        for epoch in range(10):
            train(epoch)
            test()
    
  • 相关阅读:
    《那些年啊,那些事——一个程序员的奋斗史》——48
    《那些年啊,那些事——一个程序员的奋斗史》——49
    《那些年啊,那些事——一个程序员的奋斗史》——47
    《那些年啊,那些事——一个程序员的奋斗史》——46
    《那些年啊,那些事——一个程序员的奋斗史》——46
    如何面对单调重复的任务
    几则关于glibc的locale的笔记
    欢迎大家加入Linux Mobile Research圈子
    Idle函数的三大用途
    几则gdb使用技巧
  • 原文地址:https://www.cnblogs.com/yanghh/p/14117058.html
Copyright © 2011-2022 走看看