包括两步:
1)Convert parameters and buffers of all modules to CUDA Tensor.
2)Send the inputs and targets at every step to the GPU.
注意:模型和数据要迁移到同一块显卡上。
举个例子:
import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim #============================================================================== # prepare dataset batch_size = 64 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) #============================================================================== # design model using class class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5) self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5) self.pooling = torch.nn.MaxPool2d(2) self.fc = torch.nn.Linear(320, 10) def forward(self, x): # flatten data from (n,1,28,28) to (n, 784) batch_size = x.size(0) x = F.relu(self.pooling(self.conv1(x))) x = F.relu(self.pooling(self.conv2(x))) x = x.view(batch_size, -1) # -1 此处自动算出的是320 x = self.fc(x) return x model = Net() # 把所建立的模型全部迁移到 GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) #============================================================================== # construct loss and optimizer criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) #============================================================================== # training cycle forward, backward, update def train(epoch): running_loss = 0.0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data # 将输入、输出迁移到 GPU inputs, target = inputs.to(device), target.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299: print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300)) running_loss = 0.0 #============================================================================== # test def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, target = inputs.to(device), target.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted == labels).sum().item() print('accuracy on test set: %d %% ' % (100 * correct / total)) if __name__ == '__main__': for epoch in range(10): train(epoch) test()
下面我们改进一下代码用一个更复杂的卷积神经网络来训练,首先定义一个如下的网络结构:
这个网络就是包含了各种尺寸的卷积核,因为我们并不知道哪种合适所以就都放在一起,训练的时候,合适的卷积核对应的值就会变大。代码如下:
class InceptionA(nn.Module): def __init__(self, in_channels): super(InceptionA, self).__init__() self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1) self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1) self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1) self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2) self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1) self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1) self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1) def forward(self, x): branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1) branch_pool = self.branch_pool(branch_pool) branch1x1 = self.branch1x1(x) branch5x5 = self.branch5x5_1(x) branch5x5 = self.branch5x5_2(branch5x5) branch3x3 = self.branch3x3_1(x) branch3x3 = self.branch3x3_2(branch3x3) branch3x3 = self.branch3x3_3(branch3x3) outputs = [branch1x1, branch5x5, branch3x3, branch_pool] return torch.cat(outputs, dim=1) # b,c,w,h c 对应的是 dim=1
把这个网络加到我们之前设计的模型中,整体代码如下:
import torch from torchvision import transforms from torchvision import datasets from torch.utils.data import DataLoader import torch.nn.functional as F import torch.optim as optim #============================================================================== # prepare dataset batch_size = 64 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size) test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform) test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size) #============================================================================== # design model using class class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5) self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16 self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应 self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应 self.pooling = torch.nn.MaxPool2d(2) self.fc = torch.nn.Linear(1408, 10) def forward(self, x): batch_size = x.size(0) x = F.relu(self.pooling(self.conv1(x))) x = self.incep1(x) x = F.relu(self.pooling(self.conv2(x))) x = self.incep2(x) x = x.view(batch_size, -1) x = self.fc(x) return x model = Net() # 把所建立的模型全部迁移到 GPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) #============================================================================== # construct loss and optimizer criterion = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) #============================================================================== # training cycle forward, backward, update def train(epoch): running_loss = 0.0 for batch_idx, data in enumerate(train_loader, 0): inputs, target = data # 将输入、输出迁移到 GPU inputs, target = inputs.to(device), target.to(device) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, target) loss.backward() optimizer.step() running_loss += loss.item() if batch_idx % 300 == 299: print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300)) running_loss = 0.0 #============================================================================== # test def test(): correct = 0 total = 0 with torch.no_grad(): for data in test_loader: inputs, labels = data inputs, target = inputs.to(device), target.to(device) outputs = model(inputs) _, predicted = torch.max(outputs.data, dim=1) total += labels.size(0) correct += (predicted == labels).sum().item() print('accuracy on test set: %d %% ' % (100*correct/total)) if __name__ == '__main__': for epoch in range(10): train(epoch) test()