zoukankan      html  css  js  c++  java
  • 大数据处理-Bloom Filter

    大数据处理——Bloom Filter

      布隆过滤器(Bloom Filter)是由巴顿.布隆于一九七零年提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。
      如果想判断一个元素是不是在一个集合里,一般想到的是将集合中所有元素保存起来,然后通过比较确定。链表、树、散列表(又叫哈希表,Hash table)等等数据结构都是这种思路。但是随着集合中元素的增加,我们需要的存储空间越来越大。同时检索速度也越来越慢。
      Bloom Filter 是一种空间效率很高的随机数据结构,Bloom filter 可以看做是对 bit-map 的扩展, 它的原理是:
      当一个元素被加入集合时,通过 K 个 Hash 函数将这个元素映射成一个位阵列(Bit array)中的 K 个点,把它们置为 1。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了:

    如果这些点有任何一个 0,则被检索元素一定不在;
    如果都是 1,则被检索元素很可能在。

      当一个元素被加入集合中时,通过k各散列函数将这个元素映射成一个位数组中的k个点,并将这k个点全部置为1.

      Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注:如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。
    Bloom Filte
    在判断y是否属于这个集合时,对y应用k次哈希函数,若所有hi(y)的位置都是1(1≤i≤k),就认为y是集合中的元素,否则就认为y不是集合中的元素。

    优点

      它的优点是空间效率查询时间都远远超过一般的算法,布隆过滤器存储空间和插入 / 查询时间都是常数O(k)。另外, 散列函数相互之间没有关系,方便由硬件并行实现。布隆过滤器不需要存储元素本身,在某些对保密要求非常严格的场合有优势。

    缺点

      有一定的误判率--在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误判为属于这个集合.因此,它不适合那些"零误判"的应用场合.在能容忍低误判的应用场景下,布隆过滤器通过极少的误判换区了存储空间的极大节省.
      但是布隆过滤器的缺点和优点一样明显。误算率是其中之一。随着存入的元素数量增加,误算率随之增加。但是如果元素数量太少,则使用散列表足矣。

      另外,一般情况下不能从布隆过滤器中删除元素。我们很容易想到把位数组变成整数数组,每插入一个元素相应的计数器加1, 这样删除元素时将计数器减掉就可以了。然而要保证安全地删除元素并非如此简单。首先我们必须保证删除的元素的确在布隆过滤器里面。这一点单凭这个过滤器是无法保证的。另外计数器回绕也会造成问题。
      
    Snip20170628_2

    一个Bloom Filter有以下参数:

    表示 意义
    m bit数组的宽度(bit数)
    n 加入其中的key的数量
    k 使用的hash函数的个数
    f False Positive的比率,错误率(判错率)

    Bloom Filter的f满足下列公式:
    [left ( 1-left ( 1-frac{1}{m} ight )^{kn} ight )^{k} approx left ( 1-e^{frac{-kn}{m}} ight )^{k} ]

    在给定m和n时,能够使f最小化的k值为:(frac{m}{n}ln 2approx frac{9m}{13n}approx 0.7frac{m}{n})
    此时给出的f为:(frac{1}{2}^{k}approx 0.6185^{frac{m}{n}})
    对于任意给定的f,我们有:(n= frac{mln 0.6185}{ln f})
    同时,我们需要k个hash来达成这个目标:(k = -frac{ln f}{ln 2})
    由于k必须取整数,我们在Bloom Filter的程序实现中,还应该使用上面的公式来求得实际的f:
    (f= left ( 1- e^{-frac{kn}{m}} ight )^{k})

    Example

    1、可以快速且空间效率高的判断一个元素是否属于一个集合;用来实现数据字典,或者集合求交集。
    2、使用bloom filter识别恶意链接
    3、检测垃圾邮件
    4、网页URL的去重: A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制4G,让你找出 A,B 文件共同的URL。如果是三个乃至n个文件呢?

    分析 :如果允许有一定的错误率,可以使用Bloom filter,4G内存大概可以表示340亿 bit。将其中一个文件中的url使用Bloom filter映射为这340亿bit,然后挨个读取另外一个文件的url,检查是否与Bloom filter,如果是,那么该url应该是共同的 url(注意会有一定的错误率)。”

    http://www.frankyang.cn/2017/10/01/bloom-filter/

  • 相关阅读:
    02-线性结构2 一元多项式的乘法与加法运算
    两个堆栈实现列队
    队列的顺序存储和链式存储实现
    包含MIN函数的栈+一个数组实现两个堆栈+两个数组实现MIN栈
    利用纯java捕获和播放音频
    许令波老师的java的IO机制分析文章
    soundtouch源码分析__based on csdn :
    java桌面项目打包_by icewee_写得太棒了,直接转载了
    白化检验( 白噪声准则检验 )
    对于冯嘉礼老师定性映射理论的复习
  • 原文地址:https://www.cnblogs.com/yangjiannr/p/Bloom-Filter.html
Copyright © 2011-2022 走看看