zoukankan      html  css  js  c++  java
  • matplotlib绘图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    from numpy.random import randn
    
    path=r'J:论文图集论文数据/玉米重采样1nm数据.xlsx'
    data=pd.read_excel(path)
    
    data.iloc[0].head()
    
    WaveLength    qxym4301_000_resamp
    338                        0.0206
    339                          0.02
    340                        0.0194
    341                        0.0188
    Name: 0, dtype: object
    
    data.head()
    
    
    WaveLength 338 339 340 341 342 343 344 345 346 ... 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    0 qxym4301_000_resamp 0.0206 0.0200 0.0194 0.0188 0.0182 0.0179 0.0176 0.0173 0.0175 ... 0.1515 0.2020 0.2752 0.3958 0.4624 0.3620 0.2885 0.2958 0.2914 0.2556
    1 qxym4301_002_resamp 0.0162 0.0158 0.0153 0.0150 0.0151 0.0152 0.0154 0.0156 0.0156 ... 0.1900 0.3139 0.3830 0.3787 0.4345 0.5935 0.6917 0.6336 0.5829 0.5112
    2 qxym4302_000_resamp 0.0281 0.0270 0.0261 0.0258 0.0252 0.0247 0.0244 0.0243 0.0244 ... 0.3306 0.3650 0.3830 0.3787 0.3343 0.2255 0.1739 0.2538 0.3295 0.4529
    3 qxym4302_001_resamp 0.0291 0.0278 0.0269 0.0266 0.0257 0.0249 0.0242 0.0239 0.0241 ... 0.2645 0.2920 0.2569 0.1191 0.0501 0.1840 0.2688 0.2252 0.1753 0.0718
    4 qxym4401_002_resamp 0.0309 0.0301 0.0293 0.0290 0.0276 0.0269 0.0268 0.0266 0.0263 ... 0.0502 0.0184 0.0216 0.0732 0.1273 0.1618 0.1926 0.2259 0.2174 0.0571

    5 rows × 2177 columns

    data.columns
    
    Index(['WaveLength',          338,          339,          340,          341,
                    342,          343,          344,          345,          346,
           ...
                   2504,         2505,         2506,         2507,         2508,
                   2509,         2510,         2511,         2512,         2513],
          dtype='object', length=2177)
    
    indexes=data.columns[1:]
    new_data=data.T.iloc[1:]
    
    new_data.head()
    
    0 1 2 3 4 5 6 7 8 9 ... 150 151 152 153 154 155 156 157 158 159
    338 0.0206 0.0162 0.0281 0.0291 0.0309 0.0292 0.0688 0.0198 0.0178 0.0384 ... 0.0298 0.0367 0.0355 0.0312 0.0324 0.0329 0.0333 0.0256 0.0272 0.0255
    339 0.02 0.0158 0.027 0.0278 0.0301 0.0294 0.0673 0.0197 0.0171 0.0375 ... 0.0287 0.0356 0.0345 0.0299 0.0312 0.032 0.0322 0.0249 0.0266 0.0247
    340 0.0194 0.0153 0.0261 0.0269 0.0293 0.0289 0.066 0.0196 0.0168 0.0367 ... 0.0278 0.0349 0.0337 0.0289 0.0302 0.031 0.0311 0.0243 0.0261 0.0241
    341 0.0188 0.015 0.0258 0.0266 0.029 0.0277 0.0651 0.0193 0.0171 0.0365 ... 0.0275 0.0348 0.0332 0.0284 0.0296 0.03 0.0303 0.0239 0.0259 0.024
    342 0.0182 0.0151 0.0252 0.0257 0.0276 0.0272 0.0645 0.0191 0.0172 0.0357 ... 0.0276 0.0344 0.0332 0.0282 0.0291 0.0296 0.0299 0.0238 0.0257 0.0243

    5 rows × 160 columns

    new_data.index
    plt.plot(new_data.T.iloc[0],'g--')
    plt.grid()
    plt.xlim(350,2000)
    plt.ylim(0,0.7)
    
    (0, 0.7)
    

    diff_data=pd.Series(np.diff(new_data[0]).T,index=indexes[:-1])
    
    diff_data[:1500].plot(grid='on',ylim=(-0.008,0.008))
    
    <matplotlib.axes._subplots.AxesSubplot at 0x1c24bd7fac8>
    

    
    import seaborn as sns
    sns.set(style="white")
    
    # Generate a random correlated bivariate dataset
    rs = np.random.RandomState(5)
    mean = [0, 0]
    cov = [(1, .5), (.5, 1)]
    x1, x2 = rs.multivariate_normal(mean, cov, 500).T
    x1 = pd.Series(x1, name="$X_1$")
    x2 = pd.Series(x2, name="$X_2$")
    
    # Show the joint distribution using kernel density estimation
    g = sns.jointplot(x1, x2, kind="kde")
    

  • 相关阅读:
    Spark Streaming
    RDD转换DataFrame
    Spark学习笔记之-Spark远程调试
    Spark集群模式&Spark程序提交
    spark-submit的参数名称解析
    Scala java maven开发环境搭建
    git报错之index.lock
    mongodb导出数据表命令之mongoexport
    用casperjs模拟登录,支持多个账户登录
    关于casperjs的wait方法的执行顺序
  • 原文地址:https://www.cnblogs.com/yangjing000/p/9768384.html
Copyright © 2011-2022 走看看