zoukankan      html  css  js  c++  java
  • matplotlib绘图

    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    from numpy.random import randn
    
    path=r'J:论文图集论文数据/玉米重采样1nm数据.xlsx'
    data=pd.read_excel(path)
    
    data.iloc[0].head()
    
    WaveLength    qxym4301_000_resamp
    338                        0.0206
    339                          0.02
    340                        0.0194
    341                        0.0188
    Name: 0, dtype: object
    
    data.head()
    
    
    WaveLength 338 339 340 341 342 343 344 345 346 ... 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513
    0 qxym4301_000_resamp 0.0206 0.0200 0.0194 0.0188 0.0182 0.0179 0.0176 0.0173 0.0175 ... 0.1515 0.2020 0.2752 0.3958 0.4624 0.3620 0.2885 0.2958 0.2914 0.2556
    1 qxym4301_002_resamp 0.0162 0.0158 0.0153 0.0150 0.0151 0.0152 0.0154 0.0156 0.0156 ... 0.1900 0.3139 0.3830 0.3787 0.4345 0.5935 0.6917 0.6336 0.5829 0.5112
    2 qxym4302_000_resamp 0.0281 0.0270 0.0261 0.0258 0.0252 0.0247 0.0244 0.0243 0.0244 ... 0.3306 0.3650 0.3830 0.3787 0.3343 0.2255 0.1739 0.2538 0.3295 0.4529
    3 qxym4302_001_resamp 0.0291 0.0278 0.0269 0.0266 0.0257 0.0249 0.0242 0.0239 0.0241 ... 0.2645 0.2920 0.2569 0.1191 0.0501 0.1840 0.2688 0.2252 0.1753 0.0718
    4 qxym4401_002_resamp 0.0309 0.0301 0.0293 0.0290 0.0276 0.0269 0.0268 0.0266 0.0263 ... 0.0502 0.0184 0.0216 0.0732 0.1273 0.1618 0.1926 0.2259 0.2174 0.0571

    5 rows × 2177 columns

    data.columns
    
    Index(['WaveLength',          338,          339,          340,          341,
                    342,          343,          344,          345,          346,
           ...
                   2504,         2505,         2506,         2507,         2508,
                   2509,         2510,         2511,         2512,         2513],
          dtype='object', length=2177)
    
    indexes=data.columns[1:]
    new_data=data.T.iloc[1:]
    
    new_data.head()
    
    0 1 2 3 4 5 6 7 8 9 ... 150 151 152 153 154 155 156 157 158 159
    338 0.0206 0.0162 0.0281 0.0291 0.0309 0.0292 0.0688 0.0198 0.0178 0.0384 ... 0.0298 0.0367 0.0355 0.0312 0.0324 0.0329 0.0333 0.0256 0.0272 0.0255
    339 0.02 0.0158 0.027 0.0278 0.0301 0.0294 0.0673 0.0197 0.0171 0.0375 ... 0.0287 0.0356 0.0345 0.0299 0.0312 0.032 0.0322 0.0249 0.0266 0.0247
    340 0.0194 0.0153 0.0261 0.0269 0.0293 0.0289 0.066 0.0196 0.0168 0.0367 ... 0.0278 0.0349 0.0337 0.0289 0.0302 0.031 0.0311 0.0243 0.0261 0.0241
    341 0.0188 0.015 0.0258 0.0266 0.029 0.0277 0.0651 0.0193 0.0171 0.0365 ... 0.0275 0.0348 0.0332 0.0284 0.0296 0.03 0.0303 0.0239 0.0259 0.024
    342 0.0182 0.0151 0.0252 0.0257 0.0276 0.0272 0.0645 0.0191 0.0172 0.0357 ... 0.0276 0.0344 0.0332 0.0282 0.0291 0.0296 0.0299 0.0238 0.0257 0.0243

    5 rows × 160 columns

    new_data.index
    plt.plot(new_data.T.iloc[0],'g--')
    plt.grid()
    plt.xlim(350,2000)
    plt.ylim(0,0.7)
    
    (0, 0.7)
    

    diff_data=pd.Series(np.diff(new_data[0]).T,index=indexes[:-1])
    
    diff_data[:1500].plot(grid='on',ylim=(-0.008,0.008))
    
    <matplotlib.axes._subplots.AxesSubplot at 0x1c24bd7fac8>
    

    
    import seaborn as sns
    sns.set(style="white")
    
    # Generate a random correlated bivariate dataset
    rs = np.random.RandomState(5)
    mean = [0, 0]
    cov = [(1, .5), (.5, 1)]
    x1, x2 = rs.multivariate_normal(mean, cov, 500).T
    x1 = pd.Series(x1, name="$X_1$")
    x2 = pd.Series(x2, name="$X_2$")
    
    # Show the joint distribution using kernel density estimation
    g = sns.jointplot(x1, x2, kind="kde")
    

  • 相关阅读:
    设计模式(行为模式)之 观察者模式
    java 内存区域 (程序计数器)
    java 枚举的应用
    ServiceLoad 应用(链式编程:统一执行某一类功能、、分支语句优化)
    python前端学习之css
    python学习四十四天(前端之HTML标签)
    python学习四十三天(网络IO模型)
    python学习四十二天(协程)
    python学习四十一天(线程)
    python学习四十天(进程池)
  • 原文地址:https://www.cnblogs.com/yangjing000/p/9768384.html
Copyright © 2011-2022 走看看