两次bfs可得直径,答案一定不会小于所有点到直径的距离最大值,只要把直径上的边权设为0,任选直径上一点bfs可得将最大值作为二分下界,二分直径左右端点的舍弃部分
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
#define N 300010
struct edge
{
int to,next,w;
}e[N<<1];
int head[N<<1];
int cnt;
int n,s;
int rt,x,y,z;
int maxn,top,D;
int st[N],from[N],mark[N],dis[N];//,q[N];
queue<int>q;
void link(int x,int y,int z)
{
e[++cnt]=(edge){y,head[x],z};
head[x]=cnt;
}
void bfs(int x)
{
for (int i=1;i<=n;i++)
dis[i]=-1;
q.push(x);
dis[x]=0;
while (!q.empty())
{
int now=q.front();
q.pop();
for (int i=head[now];i;i=e[i].next)
{
int t=e[i].to;
if (dis[t]==-1)
{
from[t]=now;
if (mark[t])
dis[t]=dis[now];
else
dis[t]=dis[now]+e[i].w;
q.push(t);
}
}
}
}
bool work(int d)
{
int l=1,r=top;
while (st[1]-st[l+1]<=d && l<=top)
l++;
while (st[r-1]<=d && r>=1)
r--;
return st[l]-st[r]<=s;
}
int main()
{
scanf("%d%d",&n,&s);
for (int i=1;i<n;i++)
{
scanf("%d%d%d",&x,&y,&z);
link(x,y,z);
link(y,x,z);
}
bfs(1);
for (int i=1;i<=n;i++)
if (dis[rt]<dis[i])
rt=i;
bfs(rt);
for (int i=1;i<=n;i++)
if (dis[x]<dis[i])
x=i;
D=dis[x];
st[++top]=dis[x];
mark[x]=1;
while (x!=rt)
{
st[++top]=dis[from[x]];
x=from[x];
mark[x]=1;
}
bfs(x);
int l=0,r=D;
for(int i=1;i<=n;i++)
l=max(l,dis[i]);
if (s<D)
while (l<=r)
{
int mid=(l+r)>>1;
if (work(mid))
r=mid-1;
else
l=mid+1;
}
printf("%d
",l);
return 0;
}