zoukankan      html  css  js  c++  java
  • scikit-learn:4.7. Pairwise metrics, Affinities and Kernels

    參考:http://scikit-learn.org/stable/modules/metrics.html


    The sklearn.metrics.pairwise submodule implements utilities to evaluate pairwise distances(样本对的距离) or affinity of sets of samples(样本集的相似度)。

    Distance metrics are functions d(a, b) such that d(a, b) < d(a, c) if objects a and b are considered “more similar” than objects a and c

    Kernels are measures of similarity, i.e. s(a, b) > s(a, c) if objects a and b are considered “more similar” than objects a and c


    1、Cosine similarity

    向量点积的L2-norm:

    if x and y are row vectors, their cosine similarity k is defined as:


    This kernel is a popular choice for computing the similarity of documents represented as tf-idf vectors.


    2、Linear kernel

    If x and y are column vectors, their linear kernel is:

    k(x, y) = x_transport * y


    3、Polynomial kernel

    Conceptually, the polynomial kernels considers not only the similarity between vectors under the same dimension, but also across dimensions. When used in machine learning algorithms, this allows to account for feature interaction.

    The polynomial kernel is defined as:



    4、Sigmoid kernel

    defined as:





    5、RBF kernel

    defined as:



    If  the kernel is known as the Gaussian kernel of variance .



    6、Chi-squared kernel

    defined as:


    The chi-squared kernel is a very popular choice for training non-linear SVMs in computer vision applications. It can be computed usingchi2_kernel and then passed to an sklearn.svm.SVC with kernel="precomputed":

    >>>
    >>> from sklearn.svm import SVC
    >>> from sklearn.metrics.pairwise import chi2_kernel
    >>> X = [[0, 1], [1, 0], [.2, .8], [.7, .3]]
    >>> y = [0, 1, 0, 1]
    >>> K = chi2_kernel(X, gamma=.5)
    >>> K                        
    array([[ 1.        ,  0.36...,  0.89...,  0.58...],
           [ 0.36...,  1.        ,  0.51...,  0.83...],
           [ 0.89...,  0.51...,  1.        ,  0.77... ],
           [ 0.58...,  0.83...,  0.77... ,  1.        ]])
    
    >>> svm = SVC(kernel='precomputed').fit(K, y)
    >>> svm.predict(K)
    array([0, 1, 0, 1])
    

    It can also be directly used as the kernel argument:

    >>>
    >>> svm = SVC(kernel=chi2_kernel).fit(X, y)
    >>> svm.predict(X)
    array([0, 1, 0, 1])


  • 相关阅读:
    centOS7 安装docker
    go中json的tag使用
    secureCRT操作redis-cli时, 不断追加ip:port
    golang gorm框架的默认时区问题
    java Date 转mysql timestamp 秒数不一致
    golang sqlx查询时, struct字段冲突
    golang入门time与string转换, time加减时间, 两个时间差
    idea设置每次打开手动选择工作空间
    panic: reflect.Value.Interface: cannot return value obtained from unexported field or method
    Render函数(4):开发可进行排序的表格组件
  • 原文地址:https://www.cnblogs.com/yangykaifa/p/7136902.html
Copyright © 2011-2022 走看看