採用分治法。以中间为界限。 先计算环绕中间这个数字的众数情况。然后左右分开递归计算结果,取最值就可以。
左右递归计算的时候要先做推断。假如左边或是右边的个数都比已求的重数小。就不是必需计算了。即使左边或是右边所有都是一样的。那么他的重数也是小于已求的,所以不是必需进行运算,这一周在加深分治算法的学习,这题着实花了我不少时间。
详细代码:
// 用分治法求众数
#include <iostream>
#include <cstdio>
using namespace std;
// 本程序的关键。 以中间的数字为界限。 确定左右起始和终止界限
void split(int s[], int n, int &l, int &r)
{
int mid = n/2;
for(l=0; l<n; ++l)
{
if (s[l] == s[mid])
break;
}
for(r=l+1; r<n; ++r)
{
if (s[r] != s[mid])
break;
}
}
// num 众数。 maxCnt 重数
void getMaxCnt(int &mid, int &maxCnt, int s[], int n)
{
int l, r;
split(s, n, l, r); // 进行分割。这个函数是本程序的关键
int num = n/2;
int cnt = r-l;
// update
if (cnt > maxCnt)
{
maxCnt = cnt;
mid = s[num];
}
// l 表示左边的个数。左边的个数必须大于 maxCnt 才有必要搜寻
if (l+1 > maxCnt)
{
getMaxCnt(mid, maxCnt, s, l+1);
}
// 右边搜寻, 右边数组的起始地址要变更
if (n-r > maxCnt)
{
getMaxCnt(mid, maxCnt, s+r, n-r);
}
}
int main(void)
{
int s[] = {1, 2, 2, 2, 3, 3, 5, 6, 6, 6, 6};
int n = sizeof(s)/sizeof(s[0]);
int maxCnt = 0;
int num = 0;
getMaxCnt(num, maxCnt, s, n);
printf("%d %d
", num, maxCnt);
return 0;
}
大概思路图: