zoukankan      html  css  js  c++  java
  • pandas 3 设置值

    from __future__ import print_function
    import pandas as pd
    import numpy as np
    
    np.random.seed(1)
    dates = pd.date_range('20130101', periods=6)
    df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['A', 'B', 'C', 'D'])
    
    

    赋值,新增列数据

    df.iloc[2,2], df.loc['2013-01-03', 'D']

    df.A[df.A>0], df['F']

    df.iloc[2,2] = 1111                # 设置行列编号为2,2的数据只为1
    df.loc['2013-01-03', 'D'] = 2222   # 设置行属性值为‘2013……’,列属性值为‘D’的值为2222
    df[df.A>0] = 0    # 只保留列属性为‘A’且大于0的值,全部数据中的其他数据都设置为0
    df.A[df.A>0] = 0  # 只更改列属性为‘A’的数据
    df['F'] = np.nan  # 新增加一个属性列‘F’,所有的值为NaN
    df['G']  = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101', periods=6)) # 新增一个列‘G’
    

    以下是所有的运行结果:

    print(df)
    
    >                    A         B         C         D
    > 2013-01-01  1.624345 -0.611756 -0.528172 -1.072969
    > 2013-01-02  0.865408 -2.301539  1.744812 -0.761207
    > 2013-01-03  0.319039 -0.249370  1.462108 -2.060141
    > 2013-01-04 -0.322417 -0.384054  1.133769 -1.099891
    > 2013-01-05 -0.172428 -0.877858  0.042214  0.582815
    > 2013-01-06 -1.100619  1.144724  0.901591  0.502494
    
    df.iloc[2,2] = 1111
    print(df)
    
    >                    A         B            C         D
    > 2013-01-01  1.624345 -0.611756    -0.528172 -1.072969
    > 2013-01-02  0.865408 -2.301539     1.744812 -0.761207
    > 2013-01-03  0.319039 -0.249370  1111.000000 -2.060141
    > 2013-01-04 -0.322417 -0.384054     1.133769 -1.099891
    > 2013-01-05 -0.172428 -0.877858     0.042214  0.582815
    > 2013-01-06 -1.100619  1.144724     0.901591  0.502494
    
    df.loc['2013-01-03', 'D'] = 2222
    print(df)
    
    >                    A         B            C            D
    > 2013-01-01  1.624345 -0.611756    -0.528172    -1.072969
    > 2013-01-02  0.865408 -2.301539     1.744812    -0.761207
    > 2013-01-03  0.319039 -0.249370  1111.000000  2222.000000
    > 2013-01-04 -0.322417 -0.384054     1.133769    -1.099891
    > 2013-01-05 -0.172428 -0.877858     0.042214     0.582815
    > 2013-01-06 -1.100619  1.144724     0.901591     0.502494
    
    df[df.A < 0] = 0
    print(df)
    
    >                    A         B         C         D
    > 2013-01-01  1.624345 -0.611756 -0.528172 -1.072969
    > 2013-01-02  0.865408 -2.301539  1.744812 -0.761207
    > 2013-01-03  0.319039 -0.249370  1.462108 -2.060141
    > 2013-01-04  0.000000  0.000000  0.000000  0.000000
    > 2013-01-05  0.000000  0.000000  0.000000  0.000000
    > 2013-01-06  0.000000  0.000000  0.000000  0.000000
    
    df.A[df.A < 0] = 0
    print(df)
    
    >                    A         B         C         D
    > 2013-01-01  1.624345 -0.611756 -0.528172 -1.072969
    > 2013-01-02  0.865408 -2.301539  1.744812 -0.761207
    > 2013-01-03  0.319039 -0.249370  1.462108 -2.060141
    > 2013-01-04  0.000000 -0.384054  1.133769 -1.099891
    > 2013-01-05  0.000000 -0.877858  0.042214  0.582815
    > 2013-01-06  0.000000  1.144724  0.901591  0.502494
    
    df['E'] = np.nan
    print(df)
    
    >                    A         B         C         D   E
    > 2013-01-01  1.624345 -0.611756 -0.528172 -1.072969 NaN
    > 2013-01-02  0.865408 -2.301539  1.744812 -0.761207 NaN
    > 2013-01-03  0.319039 -0.249370  1.462108 -2.060141 NaN
    > 2013-01-04  0.000000 -0.384054  1.133769 -1.099891 NaN
    > 2013-01-05  0.000000 -0.877858  0.042214  0.582815 NaN
    > 2013-01-06  0.000000  1.144724  0.901591  0.502494 NaN
    
    df['G']  = pd.Series([1,2,3,4,5,6], index=pd.date_range('20130101', periods=6))
    print(df)
    
    >                    A         B         C         D   E  G
    > 2013-01-01  1.624345 -0.611756 -0.528172 -1.072969 NaN  1
    > 2013-01-02  0.865408 -2.301539  1.744812 -0.761207 NaN  2
    > 2013-01-03  0.319039 -0.249370  1.462108 -2.060141 NaN  3
    > 2013-01-04  0.000000 -0.384054  1.133769 -1.099891 NaN  4
    > 2013-01-05  0.000000 -0.877858  0.042214  0.582815 NaN  5
    > 2013-01-06  0.000000  1.144724  0.901591  0.502494 NaN  6
    

    END

  • 相关阅读:
    Vim Tricks
    刘洋-从国内三本到牛津博士
    Pandas 学习笔记
    Netbeans and Remote Host for C/C++ Developing
    排序引论
    分枝定界法解0/1背包问题
    部署WEB项目到服务器(三)安装mysql5或者mysql8到linux服务器(Ubuntu)详解
    部署WEB项目到服务器(二)安装tomcat到linux服务器(Ubuntu)详解
    部署WEB项目到服务器(一)安装java到linux服务器(Ubuntu)详解
    FIleZilla连接linux(Ubuntu)服务器的相关问题
  • 原文地址:https://www.cnblogs.com/yangzhaonan/p/10435806.html
Copyright © 2011-2022 走看看