zoukankan      html  css  js  c++  java
  • NLP(一)词袋模型及句子相似度(转自:jclian91)

    NLP入门(一)词袋模型及句子相似度(转自:jclian91)

    原文链接:https://segmentfault.com/a/1190000016873402

    本文作为笔者NLP入门系列文章第一篇,以后我们就要步入NLP时代。
      本文将会介绍NLP中常见的词袋模型(Bag of Words)以及如何利用词袋模型来计算句子间的相似度(余弦相似度,cosine similarity)。
      首先,让我们来看一下,什么是词袋模型。我们以下面两个简单句子为例:

    sent1 = "I love sky, I love sea."
    sent2 = "I like running, I love reading."
    

    通常,NLP无法一下子处理完整的段落或句子,因此,第一步往往是分句和分词。这里只有句子,因此我们只需要分词即可。对于英语句子,可以使用NLTK中的word_tokenize函数,对于中文句子,则可使用jieba模块。故第一步为分词,代码如下:

    from nltk import word_tokenize
    sents = [sent1, sent2]
    texts = [[word for word in word_tokenize(sent)] for sent in sents]
    

    输出的结果如下:

    [['I', 'love', 'sky', ',', 'I', 'love', 'sea', '.'], ['I', 'like', 'running', ',', 'I', 'love', 'reading', '.']]
    

    分词完毕。下一步是构建语料库,即所有句子中出现的单词及标点。代码如下:

    all_list = []
    for text in texts:
        all_list += text
    corpus = set(all_list)
    print(corpus)
    

    输出如下:

    {'love', 'running', 'reading', 'sky', '.', 'I', 'like', 'sea', ','}
    

    可以看到,语料库中一共是8个单词及标点。接下来,对语料库中的单词及标点建立数字映射,便于后续的句子的向量表示。代码如下:

    corpus_dict = dict(zip(corpus, range(len(corpus))))
    print(corpus_dict)
    

    输出如下:

    {'running': 1, 'reading': 2, 'love': 0, 'sky': 3, '.': 4, 'I': 5, 'like': 6, 'sea': 7, ',': 8}
    

    虽然单词及标点并没有按照它们出现的顺序来建立数字映射,不过这并不会影响句子的向量表示及后续的句子间的相似度。
      下一步,也就是词袋模型的关键一步,就是建立句子的向量表示。这个表示向量并不是简单地以单词或标点出现与否来选择0,1数字,而是把单词或标点的出现频数作为其对应的数字表示,结合刚才的语料库字典,句子的向量表示的代码如下:

    # 建立句子的向量表示
    def vector_rep(text, corpus_dict):
        vec = []
        for key in corpus_dict.keys():
            if key in text:
                vec.append((corpus_dict[key], text.count(key)))
            else:
                vec.append((corpus_dict[key], 0))
    
        vec = sorted(vec, key= lambda x: x[0])
    
        return vec
    
    vec1 = vector_rep(texts[0], corpus_dict)
    vec2 = vector_rep(texts[1], corpus_dict)
    print(vec1)
    print(vec2)
    

    输出如下:

    [(0, 2), (1, 0), (2, 0), (3, 1), (4, 1), (5, 2), (6, 0), (7, 1), (8, 1)]
    [(0, 1), (1, 1), (2, 1), (3, 0), (4, 1), (5, 2), (6, 1), (7, 0), (8, 1)]
    

    让我们稍微逗留一会儿,来看看这个向量。在第一句中I出现了两次,在预料库字典中,I对应的数字为5,因此在第一句中5出现2次,在列表中的元组即为(5,2),代表单词I在第一句中出现了2次。以上的输出可能并不那么直观,真实的两个句子的代表向量应为:

    [2, 0, 0, 1, 1, 2, 0, 1, 1]
    [1, 1, 1, 0, 1, 2, 1, 0, 1]
    

    OK,词袋模型到此结束。接下来,我们会利用刚才得到的词袋模型,即两个句子的向量表示,来计算相似度。
      在NLP中,如果得到了两个句子的向量表示,那么,一般会选择用余弦相似度作为它们的相似度,而向量的余弦相似度即为两个向量的夹角的余弦值。其计算的Python代码如下:

    PYfrom math import sqrt
    def similarity_with_2_sents(vec1, vec2):
        inner_product = 0
        square_length_vec1 = 0
        square_length_vec2 = 0
        for tup1, tup2 in zip(vec1, vec2):
            inner_product += tup1[1]*tup2[1]
            square_length_vec1 += tup1[1]**2
            square_length_vec2 += tup2[1]**2
    
        return (inner_product/sqrt(square_length_vec1*square_length_vec2))
    
    
    cosine_sim = similarity_with_2_sents(vec1, vec2)
    print('两个句子的余弦相似度为: %.4f。'%cosine_sim)
    

    输出结果如下:

    两个句子的余弦相似度为: 0.7303。
    

    这样,我们就通过句子的词袋模型,得到了它们间的句子相似度。
      当然,在实际的NLP项目中,如果需要计算两个句子的相似度,我们只需调用gensim模块即可,它是NLP的利器,能够帮助我们处理很多NLP任务。下面为用gensim计算两个句子的相似度的代码:

    sent1 = "I love sky, I love sea."
    sent2 = "I like running, I love reading."
    
    from nltk import word_tokenize
    sents = [sent1, sent2]
    texts = [[word for word in word_tokenize(sent)] for sent in sents]
    print(texts)
    
    from gensim import corpora
    from gensim.similarities import Similarity
    
    #  语料库
    dictionary = corpora.Dictionary(texts)
    
    # 利用doc2bow作为词袋模型
    corpus = [dictionary.doc2bow(text) for text in texts]
    similarity = Similarity('-Similarity-index', corpus, num_features=len(dictionary))
    print(similarity)
    # 获取句子的相似度
    new_sensence = sent1
    test_corpus_1 = dictionary.doc2bow(word_tokenize(new_sensence))
    
    cosine_sim = similarity[test_corpus_1][1]
    print("利用gensim计算得到两个句子的相似度: %.4f。"%cosine_sim)
    

    输出结果如下:

    [['I', 'love', 'sky', ',', 'I', 'love', 'sea', '.'], ['I', 'like', 'running', ',', 'I', 'love', 'reading', '.']]
    Similarity index with 2 documents in 0 shards (stored under -Similarity-index)
    利用gensim计算得到两个句子的相似度: 0.7303。
    

    注意,如果在运行代码时出现以下warning:

    gensimutils.py:1209: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
      warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
    
    gensimmatutils.py:737: FutureWarning: Conversion of the second argument of issubdtype from `int` to `np.signedinteger` is deprecated. In future, it will be treated as `np.int32 == np.dtype(int).type`.
      if np.issubdtype(vec.dtype, np.int):
    

    如果想要去掉这些warning,则在导入gensim模块的代码前添加以下代码即可:

    import warnings
    warnings.filterwarnings(action='ignore',category=UserWarning,module='gensim')
    warnings.filterwarnings(action='ignore',category=FutureWarning,module='gensim')
    
    记录学习的点点滴滴
  • 相关阅读:
    质心坐标(barycentric coordinates)及其应用
    用表存储代替递归算法
    Lua学习之加载其他lua文件
    Mac 端配置 Lua 环境
    聊聊二手房交易遇到的恶心事
    Mac安装Python3后,如何将默认执行的Python2改为Pyhton3
    Mac平台下部署UE4工程到iOS设备的流程
    计算椭圆运动轨迹的算法
    OpenGL中的渲染方式—— GL_TRIANGLE_STRIP
    XDRender_ShaderMode_StandardPBR 间接光照(2)-镜面反射部分(1)
  • 原文地址:https://www.cnblogs.com/yangzilaing/p/14644238.html
Copyright © 2011-2022 走看看