zoukankan      html  css  js  c++  java
  • (转)常用的算法设计与分析-一夜星辰的博客

    算法设计与分析
    分治法
    1. 思想

      1.  将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
      
      2.  divide-and-conquer(P)
      {
          if(|P| <= n0)adhoc(P);
          divide P into samller subinstances P1,P2...,Pk;
          for(int i = 1;i < k;i++)
          {
              yi = divide-and-conquer(Pi);
          }
          return merge(y1,y2...,yn);
      }
      3.如何划分子问题
      -   集合论,找到一个原来集合问题的一个划分,子问题之间不相交,同时子问题的规模类型相同
      -   最优子结构(子问题类型相同)
      -   最好使子问题的规模大致相同,即将一个问题的大小分成相等规模的k个子问题的处理方法是行之有效的。
    2. 例子

      1.  fibonacci 数列        
      2.  排列问题
      3.  整数划分问题
      4.  Hanoi 塔问题
      5.  二分搜索
      6.  大整数乘法
      7.  Strassen 矩阵乘法
      8.  合并排序
      9.  快速排序
    3. 复杂度分析

      主定理:T(n) = aT(n/b)+f(n),a>=1,b>1,f(n)是给定的多项式函数,刻画了一个分治算法,生成a个子问题,每个问题的规模是原来的1/b,分解合并步骤共消耗f(n). T(n)的复杂度的分析如下:
      1.  若f(n)<n^(log(a/b)) 则T(n) = n^(log(a/b)) 
      2.  若f(n)=n^(log(a/b)) 则T(n) = n^(log(a/b))logn 
      3.  若f(n)>n^(log(a/b)) 则T(n) = f(n)
    动态规划
    1. 思想

      用一个表来记录所有以解决问题子问题的答案,不管该子问题以后是否会用到,只要它被计算过,就将其结果存入到表中,这就是动态规划法的基本思想。
      基本要素:
      1. 最优子结构:当一个问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。
      2. 重叠子问题: 在使用递归算法的时候有很多子问题是重叠的,那么我们使用一个表将已经求解过的子问题的结果保存下来
      备忘录方法
      1. 与动态规划一样:备忘录方法也是使用一张表来保存子问题的答案,下次需要解此子问题的时候,我们只需要简单查看该子问题的答案即可,而不是重新计
      算。
      2. 与动态规划不同:备忘录方法的递归方式是自顶向下的,而动态规划是自底向上的。 备忘录方法与直接控制的递归结构是相同的,但是他不用重复求解相同子问题。
      3. 当一个问题的所有子问题都要至少解一次时,使用动态规划算法比备忘录方法好。 当子问题空间中部分子问题不必求解时,用备忘录方法则较为有利,备忘录方法只用来求解那些需要求解的子问题。
    2. 基本步骤

      1. 找出最优解的性质,并刻画其结构特征
      2. 递归地定义最优值
      3. 以自底向上的方式计算出最优值
      4. 根据计算最优值时得到的信息,构造最优解
    3. 例子

      1. 矩阵连乘
      2. 最长公共子序列
      3. 0-1背包问题
    贪心算法
    1. 思想

      贪心算法总是做出当前看来最好的选择,也就是说贪心算法并不从整体最优考虑,它做出的选择只是在某种意义上的局部最优选择。
      贪心选择的基本要素:
      1.  贪心选择性质: 所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。 
      2.  最优子结构: 一个问题的最优解包含其子问题的最优解时,此问题具有最优子结构性质
    2. 贪心算法VS动态规划

      1.  贪心算法拥有贪心选择性质,动态化算法没有。动态规划算法中,每步所作出的选择往往依赖于相关子问题的解。因而只有在解出相关子问题后,才能作出选择; 而贪心算法中,仅在当前状态下作出最好选择,即局部最优选择。然后去解作出这个选择后产生相应的子问题。 贪心选择依赖于过往所做选择,但是不以利于将来将要作出的选择,也不依赖于子问题的解。
      2. 动态规划算法通常以自底向上的方式解各子问题,贪心算法则是自顶向下方式迭代进行贪心选择,每一次贪心选择将所求问题简化为规模更小的子问题
    3. 例子

      1. 活动安排问题 (最早截止时间优先)
      2. 背包问题 (权重空间比值最大者优先)
      3. 哈夫曼编码 (频率大者优先)
      4. 单源最短路径 (局部最短路径优先)
      5. 最小生成树    
          -prim (与源集合相连的权值最小边优先)
          -kruskal-(集合中边权值最小优先)
      6.  多级调度问题(长作业优先)
  • 相关阅读:
    Sqoop相关
    Hive桶表
    Hive视图
    Hive的Explain命令
    Django路由分发
    Django对应的路由名称
    Django基于正则表达式的URL(2)
    Django基于正则表达式的URL(1)
    Django模板语言循环字典
    Django的CBV和FBV
  • 原文地址:https://www.cnblogs.com/yanspecial/p/5636089.html
Copyright © 2011-2022 走看看