zoukankan      html  css  js  c++  java
  • Power Management of Hybrid DRAM/PRAM-Based Main Memory

    0.ABSTRACT

    (1)non-volatile memory——low standby power

    DRAM——high performance and better active power

    (2)we:

    present a runtime-adaptive method of DRAM decay——reduce DRAM refresh energy (large
    standby power due to refresh)

    present two methods——DRAM bypass and dirty data keeping—— reduction in refresh energy and memory access latency

    1.Introduction

    (1) In the hybrid main memory:

    DRAM works as—— a cache( lower latency and smaller power consumption in
    read and write than PRAM)

    PRAM works as——a large background main memory(low standby power )

    (2)if a memory access request to DRAM gives a miss, the data are fetched
    from PRAM to DRAM and sent to the core which issued the request.

    (3)in order to reduce DRAM refresh energy, in our work, data in DRAM decay over time(popular method)

    2.Related Work

    (1)Existing

    one to exploit low power modes——maximally utilize low power modes;

    the other to minimize refresh power—— (1) minimizing the number of rows to be refreshed while having the typical refresh period of 64ms, (2) maximizing refresh period (e.g., a refresh period of 128ms or 256ms)

    3.Preliminaries

    ?

    Note that a newly allocated DRAM row (the one which receives valid data from PRAM) can serve requests for 64ms without refresh.It is because data copy from PRAM to DRAM performs ACT and PRE commands to the row. Thus, the contents in the row can remain valid for 64ms without any additional DRAM refresh.

    4.Basic Idea

     We present three ideas for the power management of hybrid DRAM/PRAM main memory.
    -
    Runtime-adaptive time out control to minimize the total energy of DRAM and PRAM while meeting the given
    performance constraint set by the designer(we propose a sampling-based method of dynamic TO adjustment.)
    -
    Bypassing DRAM to exploit the cases of reading data with low spatial locality
    -
    Applying a long time out to dirty data to exploit write coalescing thereby reducing PRAM writes(we propose keeping dirty data in DRAM for a longer period than clean data)

    5.Proposed Power Management

    ?

    5.1 V,C,D

    6.Experiments

    7.Conclusion

  • 相关阅读:
    毕业面试试题汇总
    js获取系统日期
    非常酷的3D翻转相册展示特效
    CSS 替换元素和非替换元素 行内非替换元素
    怎样在linux下编写C程序并编译执行
    库和框架的区别
    转载:em(倍)与px的区别
    RPMForge介绍及安装
    linux下安装jdk和配置环境变量
    PCI PCI-X PCI-E介绍
  • 原文地址:https://www.cnblogs.com/yaolei/p/3434999.html
Copyright © 2011-2022 走看看