zoukankan      html  css  js  c++  java
  • Categorical Data

    This is an introduction to pandas categorical data type, including a short comparison with R’s factor.
    Categoricals are a pandas data type, which correspond to categorical variables in statistics: a variable, which can take on only a limited, and usually fixed, number of possible values (categories; levels in R). Examples are gender, social class, blood types, country affiliations, observation time or ratings via Likert scales.

    In contrast to statistical categorical variables, categorical data might have an order (e.g. ‘strongly agree’ vs ‘agree’ or ‘first observation’ vs. ‘second observation’), but numerical operations (additions, divisions, …) are not possible.

    All values of categorical data are either in categories or np.nan. Order is defined by the order of categories, not lexical order of the values. Internally, the data structure consists of a categories array and an integer array of codes which point to the real value in the categories array.

    The categorical data type is useful in the following cases:

    • A string variable consisting of only a few different values. Converting such a string variable to a categorical variable will save some memory, see here.
    • The lexical order of a variable is not the same as the logical order (“one”, “two”, “three”). By converting to a categorical and specifying an order on the categories, sorting and min/max will use the logical order instead of the lexical order, see here.
    • As a signal to other python libraries that this column should be treated as a categorical variable (e.g. to use suitable statistical methods or plot types).

    概括:Categorical Data数据类型就类似“性别”、“血型”、“班级”等,只能是一些固定的“值“。Categorical Data可以有不同级别,但是不能用于数值计算。

  • 相关阅读:
    HDFS体系结构
    HDFS核心设计
    1)HDFS分布式文件系统 2)HDFS核心设计 3 )HDFS体系结构
    大数据的特征
    zookeeper原理
    Hadoop安装手册
    微信公众号开发
    一、Ajax 二、JSON数据格式 三、Ajax+Jquery 四、分页的实现
    设计模式--工厂模式
    Spring MVC 配置文件设置全局编码
  • 原文地址:https://www.cnblogs.com/yaos/p/14014469.html
Copyright © 2011-2022 走看看