zoukankan      html  css  js  c++  java
  • sklearn 中的 r2_score

    (R^2)不止一种定义方式,这里是scikit-learn中所使用的定义。

    As such variance is dataset dependent, R² may not be meaningfully comparable across different datasets. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R² score of 0.0.

    As such variance is dataset dependent, R² may not be meaningfully comparable across different datasets. Best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R² score of 0.0.

    [R^2(y, hat{y}) = 1 - frac{sum_{i=1}^{n} (y_i - hat{y}_i)^2}{sum_{i=1}^{n} (y_i - ar{y})^2} ]

    [ar{y} = frac{1}{n} sum_{i=1}^{n} y_i ]

    [sum_{i=1}^{n} (y_i - hat{y}_i)^2 = sum_{i=1}^{n} epsilon_i^2 ]

    from sklearn.metrics import r2_score
    y_true = [3, -0.5, 2, 7]
    y_pred = [2.5, 0.0, 2, 8]
    r2_score(y_true, y_pred)
    
    y_true = [[0.5, 1], [-1, 1], [7, -6]]
    y_pred = [[0, 2], [-1, 2], [8, -5]]
    r2_score(y_true, y_pred, multioutput='variance_weighted')
    
    y_true = [[0.5, 1], [-1, 1], [7, -6]]
    y_pred = [[0, 2], [-1, 2], [8, -5]]
    r2_score(y_true, y_pred, multioutput='uniform_average')
    
    r2_score(y_true, y_pred, multioutput='raw_values')
    
    r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
    
  • 相关阅读:
    怎么把视频变小?
    Java使用HtmlUnit抓取js渲染页面
    范仁义css3课程---2、css代码引入方式
    范仁义css3课程---1、认识css样式
    width和max-width和min-width的区别
    CSS的盒子模型
    css选择器,伪类和伪元素的区别
    CSS选择器详解(总结)
    心得体悟帖---总结-191231(看似明悟)
    css3图片卡片效果
  • 原文地址:https://www.cnblogs.com/yaos/p/14016352.html
Copyright © 2011-2022 走看看