问题描述:
You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Note:
You have to rotate the image in-place, which means you have to modify the input 2D matrix directly. DO NOT allocate another 2D matrix and do the rotation.
Example 1:
Given input matrix = [ [1,2,3], [4,5,6], [7,8,9] ], rotate the input matrix in-place such that it becomes: [ [7,4,1], [8,5,2], [9,6,3] ]
Example 2:
Given input matrix = [ [ 5, 1, 9,11], [ 2, 4, 8,10], [13, 3, 6, 7], [15,14,12,16] ], rotate the input matrix in-place such that it becomes: [ [15,13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7,10,11] ]
解题思路:
本题要求在原数组上直接进行操作,我先从四个角上找了找交换的坐标的关系,然后再对i,j的递增上界进行限定。
n*n的矩阵:
i < n/2 因为四个角一起转动,如果这个时候是n的话,那就要转180度了。
j < n-1-i 也是为了防止重复转动
当遇到两个循环嵌套的时候一定要注意自增的变量有没有写对!!!
代码:
class Solution { public: void rotate(vector<vector<int>>& matrix) { int n = matrix.size(); for(int i = 0; i < n/2; i++){ for(int j = i; j < n-1-i; j++){ int temp = matrix[i][j]; matrix[i][j] = matrix[n-1-j][i]; matrix[n-1-j][i] = matrix[n-1-i][n-1-j]; matrix[n-1-i][n-1-j] = matrix[j][n-1-i]; matrix[j][n-1-i] = temp; } } } };
别的解法:
参考链接: