zoukankan      html  css  js  c++  java
  • 树的遍历--树的广度遍历(层次遍历),深度遍历(前序遍历,中序遍历,后序遍历的递归和非递归实现)

    由于本人的码云太多太乱了,于是决定一个一个的整合到一个springboot项目里面。

    附上自己的github项目地址 https://github.com/247292980/spring-boot

    附上汇总博文地址 https://www.cnblogs.com/ydymz/p/9391653.html

    以整合功能

    spring-boot,FusionChart,thymeleaf,vue,ShardingJdbc,mybatis-generator,微信分享授权,drools,spring-security,spring-jpa,webjars,Aspect,drools-drt,rabbitmq,zookeeper,mongodb,mysql存储过程,前端的延迟加载,netty,postgresql

    这次就来整合下 树的遍历

    没什么难的看了一上午,看完发现,真说出来我的理解,也不是你们的理解方式,所以这篇全代码好了。

    递归很好理解就是非递归...debug几次,细心点就好了

    ps.

    广度遍历叫层次遍历,一层一层的来就简单了。

    前序遍历,中序遍历,后序遍历的区别就是根在前(根左右),根在中(左根右),根在后(左右根)

    在最后补全所有源码

    二 广度优先遍历 层次遍历

        //广度优先遍历 层次遍历 
        public void levelIterator(TreeNode n) {
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            queue.offer(n);
            while (!queue.isEmpty()) {
                TreeNode t = queue.poll();
                if (t != null) {
                    visted(t);
                }
                if (t.leftChild != null) {
                    queue.offer(t.leftChild);
                }
                if (t.rightChild != null) {
                    queue.offer(t.rightChild);
                }
            }
        }

    三 前序遍历

      //前序遍历
        public void preOrder(TreeNode subTree) {
            if (subTree != null) {
                visted(subTree);
                preOrder(subTree.leftChild);
                preOrder(subTree.rightChild);
            }
        }
      //前序遍历的非递归实现  
        public void nonRecPreOrder(TreeNode p) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            TreeNode node = p;
            while (node != null || stack.size() > 0) {
                while (node != null) {
                    visted(node);
                    stack.push(node);
                    node = node.leftChild;
                }
                if (stack.size() > 0) {
                    node = stack.pop();
                    node = node.rightChild;
                }
            }
        }

    四 中序遍历

        //中序遍历
        public void inOrder(TreeNode subTree) {
            if (subTree != null) {
                inOrder(subTree.leftChild);
                visted(subTree);
                inOrder(subTree.rightChild);
            }
        }
        //中序遍历的非递归实现
        public void nonRecInOrder(TreeNode p) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            TreeNode node = p;
            while (node != null || stack.size() > 0) {
                //存在左子树
                while (node != null) {
                    stack.push(node);
                    node = node.leftChild;
                }
                //栈非空
                if (stack.size() > 0) {
                    node = stack.pop();
                    visted(node);
                    node = node.rightChild;
                }
            }
        }

    五 后序遍历

    //后续遍历
        public void postOrder(TreeNode subTree) {
            if (subTree != null) {
                postOrder(subTree.leftChild);
                postOrder(subTree.rightChild);
                visted(subTree);
            }
        }
        //后序遍历的非递归实现
        public void noRecPostOrder(TreeNode p) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            TreeNode node = p;
            while (p != null) {
                //左子树入栈
                for (; p.leftChild != null; p = p.leftChild) {
                    stack.push(p);
                }
                //当前结点无右子树或右子树已经输出
                while (p != null && (p.rightChild == null || p.rightChild == node)) {
                    visted(p);
                    //纪录上一个已输出结点
                    node = p;
                    if (stack.empty()) {
                        return;
                    }
                    p = stack.pop();
                }
                //处理右子树
                stack.push(p);
                p = p.rightChild;
            }
        }

    六 源码

    public class TreeNode {
        public int key;
        public String data;
        public TreeNode leftChild;
        public TreeNode rightChild;
        public boolean isVisted = false;
    
        public TreeNode(int key, String data) {
            this.key = key;
            this.data = data;
        }
    
        public TreeNode(int key, String data, TreeNode leftChild, TreeNode rightChild) {
            this.key = key;
            this.data = data;
            this.leftChild = leftChild;
            this.rightChild = rightChild;
        }
    }
    public class BinaryTree {
    
        private TreeNode root = null;
    
        public BinaryTree() {
            root = new TreeNode(1, "rootNode(A)");
        }
    
        /**
         * 创建一棵二叉树
         *           A
         *     B          C
         *  D     E            F
         *      X    M   N
         * @param root
         */
        public void createBinTree(TreeNode root) {
            TreeNode newNodeB = new TreeNode(2, "B");
            TreeNode newNodeC = new TreeNode(3, "C");
            TreeNode newNodeD = new TreeNode(4, "D");
            TreeNode newNodeE = new TreeNode(5, "E");
            TreeNode newNodeF = new TreeNode(6, "F");
            root.leftChild = newNodeB;
            root.rightChild = newNodeC;
            root.leftChild.leftChild = newNodeD;
            root.leftChild.rightChild = newNodeE;
            root.rightChild.rightChild = newNodeF;
            root.leftChild.rightChild.leftChild = new TreeNode(7, "M");
            root.leftChild.rightChild.rightChild = new TreeNode(8, "N");
    
            root.leftChild.leftChild.rightChild = new TreeNode(9, "X");
        }
    
        public boolean isEmpty() {
            return root == null;
        }
    
        //树的高度
        public int height() {
            return height(root);
        }
    
        //节点个数
        public int size() {
            return size(root);
        }
    
        private int height(TreeNode subTree) {
            if (subTree == null) {
                //递归结束:空树高度为0
                return 0;
            } else {
                int i = height(subTree.leftChild);
                int j = height(subTree.rightChild);
                return (i < j) ? (j + 1) : (i + 1);
            }
        }
    
        private int size(TreeNode subTree) {
            if (subTree == null) {
                return 0;
            } else {
                return 1 + size(subTree.leftChild)
                        + size(subTree.rightChild);
            }
        }
    
        //返回双亲结点
        public TreeNode parent(TreeNode element) {
            return (root == null || root == element) ? null : parent(root, element);
        }
    
        public TreeNode parent(TreeNode subTree, TreeNode element) {
            if (subTree == null) {
                return null;
            }
            if (subTree.leftChild == element || subTree.rightChild == element) {
                //返回父结点地址
                return subTree;
            }
            TreeNode p;
            //现在左子树中找,如果左子树中没有找到,才到右子树去找
            if ((p = parent(subTree.leftChild, element)) != null) {
                //递归在左子树中搜索
                return p;
            } else {
                //递归在右子树中搜索
                return parent(subTree.rightChild, element);
            }
        }
    
        public TreeNode getLeftChildNode(TreeNode element) {
            return (element != null) ? element.leftChild : null;
        }
    
        public TreeNode getRightChildNode(TreeNode element) {
            return (element != null) ? element.rightChild : null;
        }
    
        public TreeNode getRoot() {
            return root;
        }
    
        //在释放某个结点时,该结点的左右子树都已经释放,
        //所以应该采用后续遍历,当访问某个结点时将该结点的存储空间释放
        public void destroy(TreeNode subTree) {
            //删除根为subTree的子树
            if (subTree != null) {
                //删除左子树
                destroy(subTree.leftChild);
                //删除右子树
                destroy(subTree.rightChild);
                //删除根结点
                subTree = null;
            }
        }
    
        public void visted(TreeNode subTree) {
            subTree.isVisted = true;
            System.out.println("key:" + subTree.key + "--name:" + subTree.data);
        }
    
        //前序遍历
        public void preOrder(TreeNode subTree) {
            if (subTree != null) {
                visted(subTree);
                preOrder(subTree.leftChild);
                preOrder(subTree.rightChild);
            }
        }
    
        //中序遍历
        public void inOrder(TreeNode subTree) {
            if (subTree != null) {
                inOrder(subTree.leftChild);
                visted(subTree);
                inOrder(subTree.rightChild);
            }
        }
    
        //后续遍历
        public void postOrder(TreeNode subTree) {
            if (subTree != null) {
                postOrder(subTree.leftChild);
                postOrder(subTree.rightChild);
                visted(subTree);
            }
        }
    
        //前序遍历的非递归实现  ABDXEMNCF
        public void nonRecPreOrder(TreeNode p) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            TreeNode node = p;
            while (node != null || stack.size() > 0) {
                while (node != null) {
                    visted(node);
                    stack.push(node);
                    node = node.leftChild;
                }
                if (stack.size() > 0) {
                    node = stack.pop();
                    node = node.rightChild;
                }
            }
        }
    
        //中序遍历的非递归实现
        public void nonRecInOrder(TreeNode p) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            TreeNode node = p;
            while (node != null || stack.size() > 0) {
                //存在左子树
                while (node != null) {
                    stack.push(node);
                    node = node.leftChild;
                }
                //栈非空
                if (stack.size() > 0) {
                    node = stack.pop();
                    visted(node);
                    node = node.rightChild;
                }
            }
        }
    
        //后序遍历的非递归实现
        public void noRecPostOrder(TreeNode p) {
            Stack<TreeNode> stack = new Stack<TreeNode>();
            TreeNode node = p;
            while (p != null) {
                //左子树入栈
                for (; p.leftChild != null; p = p.leftChild) {
                    stack.push(p);
                }
                //当前结点无右子树或右子树已经输出
                while (p != null && (p.rightChild == null || p.rightChild == node)) {
                    visted(p);
                    //纪录上一个已输出结点
                    node = p;
                    if (stack.empty()) {
                        return;
                    }
                    p = stack.pop();
                }
                //处理右子树
                stack.push(p);
                p = p.rightChild;
            }
        }
    
        //层次遍历 广度优先遍历
        public void levelIterator(TreeNode n) {
            Queue<TreeNode> queue = new LinkedList<TreeNode>();
            queue.offer(n);
            while (!queue.isEmpty()) {
                TreeNode t = queue.poll();
                if (t != null) {
                    visted(t);
                }
                if (t.leftChild != null) {
                    queue.offer(t.leftChild);
                }
                if (t.rightChild != null) {
                    queue.offer(t.rightChild);
                }
            }
        }
    
        //测试
        public static void main(String[] args) {
            BinaryTree bt = new BinaryTree();
            bt.createBinTree(bt.root);
            System.out.println("the size of the tree is " + bt.size());
            System.out.println("the height of the tree is " + bt.height());
    
            System.out.println("*******(前序遍历)遍历*****************");
            bt.preOrder(bt.root);
    
            System.out.println("*******(中序遍历)遍历*****************");
            bt.inOrder(bt.root);
    
            System.out.println("*******(后序遍历)遍历*****************");
            bt.postOrder(bt.root);
    
            System.out.println("层次遍历*****************");
            bt.levelIterator(bt.root);
    
            System.out.println("***非递归实现****(前序遍历)遍历*****************");
            bt.nonRecPreOrder(bt.root);
    
            System.out.println("***非递归实现****(中序遍历)遍历*****************");
            bt.nonRecInOrder(bt.root);
    
            System.out.println("***非递归实现****(后序遍历)遍历*****************");
            bt.noRecPostOrder(bt.root);
        }
    }
  • 相关阅读:
    su的使用与退出
    338. Counting Bits
    c语言学习笔记
    Linux命令
    vimrc
    CSS选择器
    链表//设计链表
    数组和字符串//反转字符串中的单词 III
    CSS样式基本知识
    开始学习CSS,为网页添加样式
  • 原文地址:https://www.cnblogs.com/ydymz/p/10076891.html
Copyright © 2011-2022 走看看