zoukankan      html  css  js  c++  java
  • 朴素贝叶斯分类器及Python实现

    贝叶斯定理

    贝叶斯定理是通过对观测值概率分布的主观判断(即先验概率)进行修正的定理,在概率论中具有重要地位。

    先验概率分布(边缘概率)是指基于主观判断而非样本分布的概率分布,后验概率(条件概率)是根据样本分布和未知参数的先验概率分布求得的条件概率分布。

    贝叶斯公式:

    P(A∩B) = P(A)*P(B|A) = P(B)*P(A|B)

    变形得:

    P(A|B)=P(B|A)*P(A)/P(B)

    其中

    • P(A)是A的先验概率或边缘概率,称作"先验"是因为它不考虑B因素。

    • P(A|B)是已知B发生后A的条件概率,也称作A的后验概率。

    • P(B|A)是已知A发生后B的条件概率,也称作B的后验概率,这里称作似然度。

    • P(B)是B的先验概率或边缘概率,这里称作标准化常量。

    • P(B|A)/P(B)称作标准似然度。

    朴素贝叶斯分类(Naive Bayes)

    朴素贝叶斯分类器在估计类条件概率时假设属性之间条件独立。

    首先定义

    • x = {a1,a2,...}为一个样本向量,a为一个特征属性

    • div = {d1 = [l1,u1],...} 特征属性的一个划分

    • class = {y1,y2,...}样本所属的类别

    算法流程:

    (1) 通过样本集中类别的分布,对每个类别计算先验概率p(y[i])

    (2) 计算每个类别下每个特征属性划分的频率p(a[j] in d[k] | y[i])

    (3) 计算每个样本的p(x|y[i])

    p(x|y[i]) = p(a[1] in d | y[i]) * p(a[2] in d | y[i]) * ...

    样本的所有特征属性已知,所以特征属性所属的区间d已知。

    可以通过(2)确定p(a[k] in d | y[i])的值,从而求得p(x|y[i])

    (4) 由贝叶斯定理得:

    p(y[i]|x) = ( p(x|y[i]) * p(y[i]) ) / p(x)

    因为分母相同,只需计算分子。

    p(y[i]|x)是观测样本属于分类y[i]的概率,找出最大概率对应的分类作为分类结果。

    示例:

    导入数据集

    {a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

    {a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

    {a1 = 0, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

    {a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

    {a1 = 1, a2 = 0, C = 0} {a1 = 0, a2 = 0, C = 1}

    {a1 = 1, a2 = 0, C = 0} {a1 = 1, a2 = 0, C = 1}

    {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 0, C = 1}

    {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

    {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

    {a1 = 1, a2 = 1, C = 0} {a1 = 1, a2 = 1, C = 1}

    计算类别的先验概率

    P(C = 0) = 0.5

    P(C = 1) = 0.5

    计算每个特征属性条件概率:

    P(a1 = 0 | C = 0) = 0.3

    P(a1 = 1 | C = 0) = 0.7

    P(a2 = 0 | C = 0) = 0.4

    P(a2 = 1 | C = 0) = 0.6

    P(a1 = 0 | C = 1) = 0.5

    P(a1 = 1 | C = 1) = 0.5

    P(a2 = 0 | C = 1) = 0.7

    P(a2 = 1 | C = 1) = 0.3

    测试样本:

    x = { a1 = 1, a2 = 2}

    p(x | C = 0) = p(a1 = 1 | C = 0) * p( 2 = 2 | C = 0) = 0.3 * 0.6 = 0.18

    p(x | C = 1) = p(a1 = 1 | C = 1) * p (a2 = 2 | C = 1) = 0.5 * 0.3 = 0.15

    计算P(C | x) * p(x):

    P(C = 0) * p(x | C = 1) = 0.5 * 0.18 = 0.09

    P(C = 1) * p(x | C = 2) = 0.5 * 0.15 = 0.075

    所以认为测试样本属于类型C1

    Python实现

    朴素贝叶斯分类器的训练过程为计算(1),(2)中的概率表,应用过程为计算(3),(4)并寻找最大值。

    还是使用原来的接口进行类封装:

    from numpy import *
    
    class NaiveBayesClassifier(object):
        
        def __init__(self):
            self.dataMat = list()
            self.labelMat = list()
            self.pLabel1 = 0
            self.p0Vec = list()
            self.p1Vec = list()
    
        def loadDataSet(self,filename):
            fr = open(filename)
            for line in fr.readlines():
                lineArr = line.strip().split()
                dataLine = list()
                for i in lineArr:
                    dataLine.append(float(i))
                label = dataLine.pop() # pop the last column referring to  label
                self.dataMat.append(dataLine)
                self.labelMat.append(int(label))
    
    
        def train(self):
            dataNum = len(self.dataMat)
            featureNum = len(self.dataMat[0])
            self.pLabel1 = sum(self.labelMat)/float(dataNum)
            p0Num = zeros(featureNum)
            p1Num = zeros(featureNum)
            p0Denom = 1.0
            p1Denom = 1.0
            for i in range(dataNum):
                if self.labelMat[i] == 1:
                    p1Num += self.dataMat[i]
                    p1Denom += sum(self.dataMat[i])
                else:
                    p0Num += self.dataMat[i]
                    p0Denom += sum(self.dataMat[i])
            self.p0Vec = p0Num/p0Denom
            self.p1Vec = p1Num/p1Denom
    
        def classify(self, data):
            p1 = reduce(lambda x, y: x * y, data * self.p1Vec) * self.pLabel1
            p0 = reduce(lambda x, y: x * y, data * self.p0Vec) * (1.0 - self.pLabel1)
            if p1 > p0:
                return 1
            else: 
                return 0
    
        def test(self):
            self.loadDataSet('testNB.txt')
            self.train()
            print(self.classify([1, 2]))
    
    if __name__ == '__main__':
        NB =  NaiveBayesClassifier()
        NB.test()

    Matlab

    Matlab的标准工具箱提供了对朴素贝叶斯分类器的支持:

    trainData = [0 1; -1 0; 2 2; 3 3; -2 -1;-4.5 -4; 2 -1; -1 -3];
    group = [1 1 -1 -1 1 1 -1 -1]';
    model = fitcnb(trainData, group)
    testData = [5 2;3 1;-4 -3];
    predict(model, testData)

    fitcnb用来训练模型,predict用来预测。

  • 相关阅读:
    数论练习(5)——青蛙的约会(扩gcd)
    数论练习(4)——同余方程(扩gcd)
    数论练习(3)——相同后三位(快速幂)
    s if标签
    spring获取webapplicationcontext,applicationcontext几种方法详解
    Java精确测量代码运行时间 代码执行时间 纳秒 nanoTime
    java中使用二进制进行权限控制
    hibernate注解配置举例说明
    js日期处理
    Spring 简单而强大的事务管理功能
  • 原文地址:https://www.cnblogs.com/yechanglv/p/6947283.html
Copyright © 2011-2022 走看看