输入 A , B, C, k
设 D = 2^k
则存在 ( x, y ) 使
A + C*x = B ( mod D )
=> A + C*x = B + D*y
=> C*x - D*y = B - A
令 a = C, b = D, c = B-A
则转换成线性同余方程 :
a * x + b * y = c
使用扩展欧基里德求解即可
解题代码
View Code
#include<stdio.h> typedef long long LL; LL ExGcd( LL a, LL b, LL &x, LL &y ) { if( b == 0 ){ x=1;y=0;return a;} LL d = ExGcd(b, a%b, x, y); LL t = x; x = y; y = t-a/b*y; return d; } LL Gcd( LL a, LL b ) { return b == 0 ? a : Gcd( b, a%b ); } int main() { LL A, B, C, D, k; while( scanf("%lld%lld%lld%lld", &A,&B,&C,&k) , A+B+C+k ) { D = (1LL)<<k; LL x, y; LL a = C, b = D, c = B-A; LL d = Gcd( a, b ); if( c%d != 0 ) puts("FOREVER"); else { a /= d; b /= d; c /= d; ExGcd( a, b, x, y ); x =((x*c)%b+b)%b; printf("%lld\n", x); } } return 0; }