zoukankan      html  css  js  c++  java
  • 微信跳一跳学习笔记

     

     

     

     最后附上大佬的代码

    from __future__ import print_function, division
    import os
    import sys
    import time
    import math
    import random
    from PIL import Image
    import subprocess
    
    
    # 分数y坐标
    under_game_score_y = 300
    # 长按的时间系数,请自己根据实际情况调节
    press_coefficient = 1.392
    # 二分之一的棋子底座高度,可能要调节
    piece_base_height_1_2 = 20
    # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
    piece_body_width = 70
    
    
    def set_button_position(im):
        """
        将 swipe 设置为 `再来一局` 按钮的位置
        """
        global swipe_x1, swipe_y1, swipe_x2, swipe_y2
        w, h = im.size
        left = int(w / 2)
        top = int(1584 * (h / 1920.0))
        left = int(random.uniform(left-50, left+50))
        top = int(random.uniform(top-10, top+10))    # 随机防 ban
        swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
    
    
    def jump(distance):
        """
        跳跃一定的距离
        """
        press_time = distance * press_coefficient
        press_time = max(press_time, 200)   # 设置 200ms 是最小的按压时间
        press_time = int(press_time)
        cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
            x1=swipe_x1,
            y1=swipe_y1,
            x2=swipe_x2,
            y2=swipe_y2,
            duration=press_time
        )
        print(cmd)
        os.system(cmd)
        return press_time
    
    
    def find_piece_and_board(im):
        """
        寻找关键坐标
        """
        w, h = im.size
    
        piece_x_sum = 0
        piece_x_c = 0
        piece_y_max = 0
        board_x = 0
        board_y = 0
        scan_x_border = int(w / 8)  # 扫描棋子时的左右边界
        scan_start_y = 0  # 扫描的起始 y 坐标
        im_pixel = im.load()
        # 以 50px 步长,尝试探测 scan_start_y
        for i in range(int(h / 3), int(h*2 / 3), 50):
            last_pixel = im_pixel[0, i]
            for j in range(1, w):
                pixel = im_pixel[j, i]
                # 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环
                if pixel != last_pixel:
                    scan_start_y = i - 50
                    break
            if scan_start_y:
                break
        print('scan_start_y: {}'.format(scan_start_y))
    
        # 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3
        for i in range(scan_start_y, int(h * 2 / 3)):
            # 横坐标方面也减少了一部分扫描开销
            for j in range(scan_x_border, w - scan_x_border):
                pixel = im_pixel[j, i]
                # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜
                # 色这样应该 OK,暂时不提出来
                if (50 < pixel[0] < 60) 
                        and (53 < pixel[1] < 63) 
                        and (95 < pixel[2] < 110):
                    piece_x_sum += j
                    piece_x_c += 1
                    piece_y_max = max(i, piece_y_max)
    
        if not all((piece_x_sum, piece_x_c)):
            return 0, 0, 0, 0
        piece_x = int(piece_x_sum / piece_x_c)
        piece_y = piece_y_max - piece_base_height_1_2  # 上移棋子底盘高度的一半
    
        # 限制棋盘扫描的横坐标,避免音符 bug
        if piece_x < w/2:
            board_x_start = piece_x
            board_x_end = w
        else:
            board_x_start = 0
            board_x_end = piece_x
    
        for i in range(int(h / 3), int(h * 2 / 3)):
            last_pixel = im_pixel[0, i]
            if board_x or board_y:
                break
            board_x_sum = 0
            board_x_c = 0
    
            for j in range(int(board_x_start), int(board_x_end)):
                pixel = im_pixel[j, i]
                # 修掉脑袋比下一个小格子还高的情况的 bug
                if abs(j - piece_x) < piece_body_
                    continue
    
                # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
                if abs(pixel[0] - last_pixel[0]) 
                        + abs(pixel[1] - last_pixel[1]) 
                        + abs(pixel[2] - last_pixel[2]) > 10:
                    board_x_sum += j
                    board_x_c += 1
            if board_x_sum:
                board_x = board_x_sum / board_x_c
        last_pixel = im_pixel[board_x, i]
    
        # 从上顶点往下 +274 的位置开始向上找颜色与上顶点一样的点,为下顶点
        # 该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、
        # 药瓶和非菱形的碟机(好像是)会判断错误
        for k in range(i+274, i, -1):  # 274 取开局时最大的方块的上下顶点距离
            pixel = im_pixel[board_x, k]
            if abs(pixel[0] - last_pixel[0]) 
                    + abs(pixel[1] - last_pixel[1]) 
                    + abs(pixel[2] - last_pixel[2]) < 10:
                break
        board_y = int((i+k) / 2)
    
        # 如果上一跳命中中间,则下个目标中心会出现 r245 g245 b245 的点,利用这个
        # 属性弥补上一段代码可能存在的判断错误
        # 若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有
        # 可能游戏失败,由于花纹面积通常比较大,失败概率较低
        for j in range(i, i+200):
            pixel = im_pixel[board_x, j]
            if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:
                board_y = j + 10
                break
    
        if not all((board_x, board_y)):
            return 0, 0, 0, 0
        return piece_x, piece_y, board_x, board_y
    
    
    def pull_screenshot():
        os.system('adb shell screencap -p /sdcard/1.png')
        os.system('adb pull /sdcard/1.png .')
    
    
    def check_screenshot():
        # 检查获取截图的方式
        if os.path.isfile('1.png'):
            os.remove('1.png')
        pull_screenshot()
        Image.open('./1.png').load()
    
    
    def main():
        check_screenshot()
    
        i, next_rest, next_rest_time = (0, random.randrange(3, 10),
                                        random.randrange(5, 10))
        while True:
            pull_screenshot()
            im = Image.open('./1.png')
            # 获取棋子和 board 的位置
            piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
            ts = int(time.time())
            print(ts, piece_x, piece_y, board_x, board_y)
            set_button_position(im)
            jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
            im.close()
            i += 1
            if i == next_rest:
                print('已经连续打了 {} 下,休息 {}s'.format(i, next_rest_time))
                for j in range(next_rest_time):
                    sys.stdout.write('
    程序将在 {}s 后继续'.format(next_rest_time - j))
                    sys.stdout.flush()
                    time.sleep(1)
                print('
    继续')
                i, next_rest, next_rest_time = (0, random.randrange(30, 100),
                                                random.randrange(10, 60))
            # 为了保证截图的时候应落稳了,多延迟一会儿,随机值防 ban
            time.sleep(random.uniform(0.9, 1.2))
    
    
    if __name__ == '__main__':
        main()
    大佬的代码
  • 相关阅读:
    夜神安卓模拟器
    Jmeter分布式压力测试环境配置
    Jmeter接口测试数组变量传值
    Jmeter测试JDBC
    BeanShell PreProcessor数据base64加密
    数据库锁表查看与解锁
    Python对数据库进行操作
    Jmeter正则表达式提取器详解
    将博客搬至CSDN
    web开发学习笔记(四)Ajax的使用方法
  • 原文地址:https://www.cnblogs.com/yeluozhiqiumax/p/13044474.html
Copyright © 2011-2022 走看看