zoukankan      html  css  js  c++  java
  • 牛顿插值公式与拉格朗日插值的余项

    Suppose that $n\geq 0$ ,and that $f$ is a real-valued function,defined and continuous on the closed interval $[a,b]$,such that the derivative of $f$ of order $n+1$ exists and is continuous on $[a,b]$.Then,given that $x_{n+1}\in [a,b]$,there exists $\xi=\xi(x_{n+1})$ in $(a,b)$ such that
    \begin{equation}
    f(x_{n+1})-p_n(x_{n+1})=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x_{n+1}-x_0)\cdots(x_{n+1}-x_n).
    \end{equation}

    Proof:This result is closely related to 牛顿插值公式.According to Newton's interpolation method ,

    \begin{align*}
    f(x_{n+1})=f(x_0)&+(x_{n+1}-x_0)f[x_0,x_1]\\&+(x_{n+1}-x_0)(x_{n+1}-x_1)f[x_0,x_1,x_2]\\&+\cdots\\&+(x_{n+1}-x_0)(x_{n+1}-x_1)\cdots
    (x_{n+1}-x_{n-1})f[x_0,x_1,\cdots,x_n]\\&+R_n(x_{n+1})
    \end{align*}

    Now we prove that
    \begin{equation}
    f[x_{n+1},x_0,x_1,\cdots,x_n]=\frac{f^{(n+1)}(\xi(x_{n+1}))}{(n+1)!},\forall x_{n+1}\in
    [a,b],\exists \xi(x_{n+1})\in (a,b)
    \end{equation}
    When $n=0$,
    \begin{equation}
    f[x_1,x_0]=f'(\xi)
    \end{equation}

    This is simply the differential mean value theorem.When $n=1$ ,we just need to prove that

    \begin{equation}
    f(x_2)=f(x_0)+f[x_0,x_1](x_{2}-x_0)+\frac{f^{(2)}(\xi(x_2))}{2!}(x_{2}-x_0)(x_{2}-x_1)
    \end{equation}

    What to do next?We stop here to investigate what we did when we deal with the case of $n=0$.How did we prove differential mean value theorem?We use Rolle's theorem once to prove the differential mean value theorem which is shown below:

    Let $f(x)$ be continous on $[a,b]$,differentiable on $(a,b)$,then there exists $\xi\in (a,b)$ such that
    \begin{equation}
    f[x_0,x_1]=f'(\xi)
    \end{equation}

    In order to prove this ,we construct a function

    \begin{equation}
    g(x)=f(x)-(f(x_0)+f[x_0,x_1](x-x_0))
    \end{equation}

    Then $g(x_0)=g(x_1)=0$,so we can use Rolle's theorem once to prove the differential mean value theorem.So similarly,We construct a function $g(x)$,such that

    \begin{equation}
    g(x)=f(x)-(f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1))
    \end{equation}

    It is easy to verify that

    \begin{equation}
    g(x_0)=0,g(x_1)=0,g(x_2)=0
    \end{equation}
    So use Rolle's theorem twice,we can get that

    \begin{equation}
    f''(\xi(x_2))-2!f[x_0,x_1,x_2]=0
    \end{equation}
    So
    \begin{equation}
    f[x_0,x_1,x_2]=\frac{f''(\xi(x_2))}{2!}
    \end{equation}


    So in general,we construct a function

    \begin{align*}
    g(x)=f(x)-(f(x_0)+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)+\cdots+f[x_0,x_1,\cdots,x_n,x_{n+1}](x-x_0)(x-x_1)\cdots
    (x-x_n))
    \end{align*}

    Then it is easy to verify that

    \begin{equation}
    g(x_0),g(x_1),\cdots,g(x_n)=0
    \end{equation}(Why?)

    So use Rolle's theorem $n+1$ times ,we can get that

    \begin{equation}
    f^{(n+1)}(\xi(x_{n+1}))=(n+1)!f[x_0,x_1,\cdots,x_n,x_{n+1}]
    \end{equation}Done.

    Remark:I also make some notes in Remainder term of Lagrange Interpolation Polynomial.

  • 相关阅读:
    CSS基础
    数据库优化之SQL Server
    压力测试与系统调优
    JBoss架构分析
    JBoss基本配置
    深入了解硬盘结构
    EJB2与EJB3架构对比
    JBoss高级配置
    病毒分类及病毒命名规则详解
    深入讲解防火墙的概念原理与实现
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827581.html
Copyright © 2011-2022 走看看