zoukankan      html  css  js  c++  java
  • Elementary Methods in Number Theory Exercise 1.2.17

    Let
    $$
    (x_0,x_1,\cdots,x_n)\in S=\mathbf{Q}\backslash \{(0,0,\cdots,0\}
    $$

    Let $[(x_0,x_1,\cdots,x_n)]$ denote the equivalence class of $(x_0,x_1,\cdots,x_n)$ in $P^n(\mathbf{Q})$.Prove that there exists exactly two elements $(a_0,a_1,\cdots,a_n)$ and $(b_0,b_1,\cdots,b_n)$in $S$ such that the numbers $a_0,\cdots,a_n$ are relatively prime integers,the numbers $b_0,\cdots,b_n$ are relatively prime integers ,and
    \begin{equation}
    [(x_0,x_1,\cdots,x_n)]=[(a_0,a_1,\cdots,a_n)]=[(b_0,b_1,\cdots,b_n)]\in P^n(\mathbf{Q})
    \end{equation}
    Moreover,
    \begin{equation}
    (b_0,b_1,\cdots,b_n)=-(a_0,a_1,\cdots,a_n)
    \end{equation}

    Proof:
    \begin{align*}
    \begin{cases}
    a_0=tx_0\\
    a_1=tx_1\\
    \vdots\\
    a_n=tx_n\\
    \end{cases}
    \end{align*}
    Let $x_i=\frac{a_i}{b_i}(b_i\neq 0),(a_i,b_i)=1$.Let the least common multiple of $b_0,b_2,\cdots,b_n$ be $k$.Let the greatest common divisor of $a_0,a_1,\cdots,a_n$ be $m$.Then let
    \begin{equation}
    t=\pm \frac{k}{m}
    \end{equation}
    Done.

  • 相关阅读:
    【学习笔记】最小表示法
    bzoj1912【Apio2010】patrol 巡逻
    hdu1057
    hdu1056
    hdu1055
    hdu1054
    hdu1053
    hdu1052
    hdu1051
    hdu1050
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3827628.html
Copyright © 2011-2022 走看看