zoukankan      html  css  js  c++  java
  • 《The linear algebra a beginning graduate student ought to know》 Page 8 Field $a+b\sqrt{p}$($p$ is a prime)

    The set $\bf{Q}^2$ is a subfield of the field $\bf{C}$ defined above.However, it is also possible to define field structures on $\bf{Q}^2$ in other ways.Indeed, let $F = \bf{Q}^2$ and let $p$ be a fixed prime integer. Define addition and multiplication on $F$ by setting $(a, b) + (c, d) = (a + c, b + d)$ and $(a, b)\cdot(c, d) = (ac + bdp, ad + bc)$.


    Now I prove this forms a field.

    Proof:

    1.$\bf{Q}^2$ together with + form an abelian group.

    2.$(0,0)$ is the additive zero in $\bf{Q}^2$.

    3.Now I prove that $\bf{Q}^2\backslash\{(0,0)\}$ is an abelian group under multiplication.Now we calculate its multiply identity.
    \begin{equation}
    \begin{cases}
    ac+bdp=a\\
    ad+bc=b\\
    \end{cases}
    \end{equation}

    So
    \begin{equation}
    c=\frac{\begin{vmatrix}
    a&bp\\
    b&a\\
    \end{vmatrix}}{\begin{vmatrix}
    a&bp\\
    b&a\\
    \end{vmatrix}}=1
    \end{equation}
    \begin{equation}
    d=\frac{\begin{vmatrix}
    a&a\\
    b&b\\
    \end{vmatrix}}{\begin{vmatrix}
    a&bp\\
    b&a\\
    \end{vmatrix}}=0
    \end{equation}
    So if it has a multiply identity,this identity would be $(1,0)$.Now I examine that $(1,0)$ is actually a multiply identity of $\bf{Q}^2\backslash\{0\}$.This is very easy to verify.

    Now I would like to find out multiply inverse for every element of $\bf{Q}\backslash\{0\}$.

    \begin{equation}
    (a,b)\cdot(m,n)=(1,0)
    \end{equation}

    So
    \begin{equation}
    m=\frac{\begin{vmatrix}
    1&bp\\
    0&a\\
    \end{vmatrix}}{\begin{vmatrix}
    a&bp\\
    b&a\\
    \end{vmatrix}}=\frac{a}{a^2-b^2p}
    \end{equation}
    \begin{equation}
    n=\frac{\begin{vmatrix}
    a&1\\
    b&0\\
    \end{vmatrix}}{\begin{vmatrix}
    a&bp\\
    b&a\\
    \end{vmatrix}}=\frac{-b}{a^2-b^2p}
    \end{equation}
    (I need to point out that $a^2-b^2p\neq 0$,this is because if $a^2=b^2p$,then $p$ is not a prime,which is a contradiction.)Now I examine $(\frac{a}{a^2-b^2p},\frac{-b}{a^2-b^2p})$ is actually a multiply inverse of $(a,b)$.I just need to examine that
    \begin{equation}
    (\frac{a}{a^2-b^2p},\frac{-b}{a^2-b^2p})\cdot (a,b)=(1,0)
    \end{equation}
    This is easy to verify.

    Now I prove the commutivity:This is easy to verify.

    Now I prove the associativity:
    \begin{equation}
    [(a,b)\cdot(c,d)]\cdot(e,f)=(a,b)\cdot[(c,d)\cdot (e,f)]
    \end{equation}
    \begin{equation}
    [(a,b)\cdot(c,d)]\cdot(e,f)=(ace+bdep+adfp+bcfp,ade+bce+acf+bdfp)
    \end{equation}
    Let $a\leftrightarrow e$,$b\leftrightarrow f$,then $(ace+bdep+adfp+bcfp,ade+bce+acf+bdfp)$ becomes itself.So the associativity holds.

    So $\bf{Q}^2\backslash\{0\}$ form a abelian group with regard to multiplication.


    So $\bf{Q}^2$ form a field.

  • 相关阅读:
    编程题目: PAT 1012. 数字分类 (20)
    编程题目: PAT 1011. A+B和C (15)
    Poj3683(2-set
    LightOJ 1427(AC自动机
    UVA 11990(BIT套treap
    网络流汇总....
    10月——备战区域赛
    去掉ubuntu的文件管理器中“位置”栏里的无用标签
    Poj 2104(主席树入门
    Poj 1568(极大极小搜索
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828092.html
Copyright © 2011-2022 走看看