zoukankan      html  css  js  c++  java
  • Analysis by Its History Exercise 2.5

    In order to study the convergence of $(1+\frac{1}{n})^n$ to $e$,consider the sequences
    \begin{equation}
    a_n=(1+\frac{1}{n})^n~~~\mbox{and}~~~b_n=(1+\frac{1}{n})^{n+1}
    \end{equation}show that
    \begin{equation}
    a_1<a_{2}<\cdots<e<\cdots<b_3<b_2<b_1
    \end{equation}
    and that $b_n-a_n\leq \frac{4}{n}$.


    Proof:According to this post,$a_1<a_2<\cdots<e$.Then we prove that

    \begin{equation}
    (1+\frac{1}{n})^{n+1}>(1+\frac{1}{n+1})^{n+2}
    \end{equation}
    This is simple,because
    \begin{equation}
    \label{eq:ksdas}
    (1+\frac{1}{n+1})^{n+2}=(1+\frac{1}{n+1})^{n+1}(1+\frac{1}{n+1})<(1+\frac{1}{n})^n(1+\frac{1}{n})=(1+\frac{1}{n})^{n+1}
    \end{equation}

    Then we prove that
    \begin{equation}
    (1+\frac{1}{n})^{n+1}-(1+\frac{1}{n})^n\leq \frac{4}{n}
    \end{equation}

    We only need to prove that
    \begin{equation}
    (1+\frac{1}{n})^n\leq 4
    \end{equation}

    This is simple,because
    \begin{equation}
    e=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots<3
    \end{equation}

  • 相关阅读:
    我再也不相信正解了……
    悬线法
    防线 Defence
    奶牛浴场
    环状两段最大子段和
    三步必杀
    加工生产调度
    种树
    UVA11134 传说中的车 Fabled Rooks
    UVA 11054 Gergovia的酒交易 Wine trading in Gergovia
  • 原文地址:https://www.cnblogs.com/yeluqing/p/3828146.html
Copyright © 2011-2022 走看看