参考文章:https://zhuanlan.zhihu.com/p/76269142
参考文章:https://zhuanlan.zhihu.com/p/86386926
贝叶斯的优势:
1、适用于一次参数计算很慢的情况
2、优化的function没有导数信息
贝叶斯的劣势:
1、参数太多(high-dimension BO)
2、有太多的离散参数。
思路:
在X空间中找到 argmax f(x)
f(x)比较复杂,用比较简单的 a(x) 来估计。
a(x)需要估计在每个x的期望和方差
几个常用的 a(x)形式:
GP-UCB: a(x) = miu(x) + sqrt(beta) * sigma(x)
EI : 比之前最好的大的期望,
Entropy Search(ES):
问题:
1、高斯过程怎么看待离散参数?
2、TPE在做什么?