zoukankan      html  css  js  c++  java
  • poj1190,DFS/已知一个等式,求另一个最小值

    7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体。 
    设从下往上数第i(1 <= i <= M)层蛋糕是半径为Ri, 高度为Hi的圆柱。当i < M时,要求Ri > Ri+1且Hi > Hi+1。 
    由于要在蛋糕上抹奶油,为尽可能节约经费,我们希望蛋糕外表面(最下一层的下底面除外)的面积Q最小。 
    令Q = Sπ 
    请编程对给出的N和M,找出蛋糕的制作方案(适当的Ri和Hi的值),使S最小。 
    (除Q外,以上所有数据皆为正整数) 

    Input

    有两行,第一行为N(N <= 10000),表示待制作的蛋糕的体积为Nπ;第二行为M(M <= 20),表示蛋糕的层数为M。

    Output

    仅一行,是一个正整数S(若无解则S = 0)。


    已知n=r1^2*h1+....ri^2*hi+....rm^2*hm(n,m已知,所有数为正整数),求s=r1^2+2*r1*h1+....2*ri*hi+...+2*rm*hm最小值。

    DFS爆搜,+剪枝。关键是怎么减的问题,归纳如下:1,从第一个已知的减,如缩小范围,超过等,2.从目前最优的情况考虑,如果已经比目前最优差了,就不用考虑下去了!

    关键剪枝说明:“假设只有一个圆柱,该圆柱的半径为r,体积为V,那么根据体积和表面积公式,可知:2 * v/r 是该圆柱的侧面积。现在我们有2个圆柱,要求这两个圆柱叠在一起之后满足题目的条件:下柱半径>上柱半径。现在把上柱往下压扁,压到和下柱的半径相等,那么根据表面积和体积公式,我们知道上柱的侧面积会减小。(s=2 * v/r,相同体积时,R大,侧面积小)所以多个圆柱叠立,假设最下面圆柱半径最大,该半径为r。于是,这些圆柱的侧面积之和>=等体积的半径为r的圆柱的侧面积。

    #include<iostream>
    #include<cmath>
    using namespace std;
    int r[21];int h[21];
    int ans;
    void dfs(int cur,int m,int n,int sum,int sum_ans)
    {
    
       if(cur==m+1)                  //注意点!先后问题!
       {
           if(sum==n)
           {
                if(sum_ans<ans)ans=sum_ans;
           }
       }
       else
       {
          for(int i=m-cur+1;i<r[cur-1];i++)
            for(int j=m-cur+1;j<h[cur-1];j++)
            {
                r[cur]=i;
                h[cur]=j;
               // cout<<i<<"**"<<j<<endl;
                 int temp=m-cur;
     
                if(sum+i*i*j+(m-cur)*r[cur]*h[cur]*r[cur]<n)continue; //体积不可能到N了。注意continue,与break 区别
                if(sum+i*i*j>n)break;                              //体积已经大于n了。
                if(sum_ans+2*i*j+2*(n-sum-i*i*j)/i>ans)break;     //关键剪枝!把剩余体积全转化为表面积(按最大的转是表面积最小的情况)
                if(sum_ans+2*i*j+(temp*(temp+1)*(2*temp+1)/3)>ans)break;
                                         //  这样写不可,一次return后,这次不再还原。 sum+=i*i*j;
                                           //   if(sum>n) return ;
            dfs(cur+1,m,n,sum+i*i*j,cur==1?sum_ans+2*i*j+i*i:sum_ans+2*i*j);        //非也,把这层RETURN了,这层有些值还是可以的,下次循环
                                             //   sum-=i*i*j;
            }
       }
    }
    int main()
    {
      int n,s,m;
      cin>>n>>m;
    
          ans=1000000;
          r[0]=(n-m*(m-1)*(2*m-1)/6)/m;
          h[0]=(n-m*(m-1)*(2*m-1)/6)/(m*m)+1;
          dfs(1,m,n,0,0);
          if(ans==1000000)cout<<0<<endl;
          else cout<<ans<<endl;
    
    return 0;
    }
    


  • 相关阅读:
    Python学习---IO的异步[tornado模块]
    Python学习---IO的异步[twisted模块]
    Python学习---IO的异步[gevent+Grequests模块]
    Python学习---IO的异步[asyncio +aiohttp模块]
    Python学习---IO的异步[asyncio模块(no-http)]
    Python学习---Python的异步IO[all]
    Python学习---爬虫学习[scrapy框架初识]
    Python学习---Django关于POST的请求解析源码分析
    Python学习---爬虫学习[requests模块]180411
    Python实例---CRM管理系统分析180331
  • 原文地址:https://www.cnblogs.com/yezekun/p/3925823.html
Copyright © 2011-2022 走看看