zoukankan      html  css  js  c++  java
  • POJ 1436 Horizontally Visible Segments (线段树·区间染色)

    题意   在坐标系中有n条平行于y轴的线段  当一条线段与还有一条线段之间能够连一条平行与x轴的线不与其他线段相交  就视为它们是可见的  问有多少组三条线段两两相互可见

    先把全部线段存下来  并按x坐标排序  线段树记录相应区间从右往左当前可见的线段编号(1...n)  超过一条就为0  然后从左往右对每条线段  先查询左边哪些线段和它是可见的  把可见关系存到数组中  然后把这条线段相应区间的最右端可见编号更新为这条线段的编号  最后暴力统计有多少组即可了

    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define lc p<<1, s, mid
    #define rc p<<1|1, mid+1, e
    #define mid ((s+e)>>1)
    using namespace std;
    const int N = 8005;
    int top[N * 8];
    bool g[N][N];
    
    struct seg
    {
        int y1, y2, x;
    } line[N];
    
    bool cmp(seg a, seg b)
    {
        return a.x < b.x;
    }
    
    void build()
    {
        memset(g, 0, sizeof(g));
        memset(top, 0, sizeof(top));
    }
    
    void pushup(int p)
    {
        top[p] = (top[p << 1] == top[p << 1 | 1]) ? top[p << 1] : 0;
    }
    
    void pushdown(int p)
    {
        if(top[p])
        {
            top[p << 1] = top[p << 1 | 1] = top[p];
            top[p] = 0;
        }
    }
    
    void update(int p, int s, int e, int l, int r, int v)
    {
        if(l <= s && e <= r)
        {
            top[p] = v;
            return;
        }
        pushdown(p);
        if(l <= mid) update(lc, l, r, v);
        if(r > mid) update(rc, l, r, v);
        pushup(p);
    }
    
    void query(int p, int s, int e, int l, int r, int x)
    {
        if(top[p]) //p相应的区间已经仅仅可见一条线段
        {
            g[top[p]][x] = 1;
            return;
        }
        if(s == e) return;
        if(l <= mid) query(lc, l, r, x);
        if(r > mid) query(rc, l, r, x);
    }
    
    int main()
    {
        int T, n, l, r;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d", &n);
            for(int i = 1; i <= n; ++i)
                scanf("%d%d%d", &line[i].y1, &line[i].y2, &line[i].x);
            sort(line + 1, line + n + 1, cmp);
    
            build();
            for(int i = 1; i <= n; ++i)
            {
                //点化为区间会丢失间隔为1的区间  所以要乘以2
                l = (line[i].y1) * 2;
                r = (line[i].y2) * 2;
                query(1, 0, N * 2, l, r, i);
                update(1, 0, N * 2, l, r, i);
            }
    
            int ans = 0;
            for(int i = 1; i <= n; ++i)
            {
                for(int j = i + 1; j <= n; ++j)
                {
                    if(g[i][j])
                        for(int k = j + 1; k <= n; ++k)
                            if(g[j][k] && g[i][k]) ++ans;
                }
            }
    
            printf("%d
    ", ans);
        }
        return 0;
    }
    //Last modified :   2015-07-15 15:33
    

    Horizontally Visible Segments

    Description

    There is a number of disjoint vertical line segments in the plane. We say that two segments are horizontally visible if they can be connected by a horizontal line segment that does not have any common points with other vertical segments. Three different vertical segments are said to form a triangle of segments if each two of them are horizontally visible. How many triangles can be found in a given set of vertical segments? 


    Task 

    Write a program which for each data set: 

    reads the description of a set of vertical segments, 

    computes the number of triangles in this set, 

    writes the result. 

    Input

    The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 20. The data sets follow. 

    The first line of each data set contains exactly one integer n, 1 <= n <= 8 000, equal to the number of vertical line segments. 

    Each of the following n lines consists of exactly 3 nonnegative integers separated by single spaces: 

    yi', yi'', xi - y-coordinate of the beginning of a segment, y-coordinate of its end and its x-coordinate, respectively. The coordinates satisfy 0 <= yi' < yi'' <= 8 000, 0 <= xi <= 8 000. The segments are disjoint.

    Output

    The output should consist of exactly d lines, one line for each data set. Line i should contain exactly one integer equal to the number of triangles in the i-th data set.

    Sample Input

    1
    5
    0 4 4
    0 3 1
    3 4 2
    0 2 2
    0 2 3

    Sample Output

    1

    Source



  • 相关阅读:
    nginx服务
    安装python
    软件包安装总结
    看内存大小
    计算机系统基础知识04
    计算机系统基础知识03
    计算机系统基础知识02
    计算机系统基础知识01
    python常用模块-logging模块
    python基础-包的使用
  • 原文地址:https://www.cnblogs.com/yfceshi/p/6746272.html
Copyright © 2011-2022 走看看