zoukankan      html  css  js  c++  java
  • POJ 3268 Bookshelf 2 动态规划法题解

    Description

    Farmer John recently bought another bookshelf for the cow library, but the shelf is getting filled up quite quickly, and now the only available space is at the top.

    FJ has N cows (1 ≤ N ≤ 20) each with some height of Hi (1 ≤ Hi ≤ 1,000,000 - these are very tall cows). The bookshelf has a height of B (1 ≤ B ≤ S, where S is the sum of the heights of all cows).

    To reach the top of the bookshelf, one or more of the cows can stand on top of each other in a stack, so that their total height is the sum of each of their individual heights. This total height must be no less than the height of the bookshelf in order for the cows to reach the top.

    Since a taller stack of cows than necessary can be dangerous, your job is to find the set of cows that produces a stack of the smallest height possible such that the stack can reach the bookshelf. Your program should print the minimal 'excess' height between the optimal stack of cows and the bookshelf.

    Input

    * Line 1: Two space-separated integers: N and B
    * Lines 2..N+1: Line i+1 contains a single integer: Hi

    Output

    * Line 1: A single integer representing the (non-negative) difference between the total height of the optimal set of cows and the height of the shelf.

    Sample Input

    5 16
    3
    1
    3
    5
    6

    Sample Output

    1

    Source


    解题思路:

    1 确定可能的最大高度sum。就是全部的cow加起来的高度

    2 依据动态规划法。求解1到最大高度sum之间的可能解

    3 找到比B(书架高度)的最低高度。可能和B一致。


    #include <stdio.h>
    #include <vector>
    #include <limits.h>
    #include <string.h>
    #include <algorithm>
    using namespace std;
    
    const int MAX_N = 21, MAX_H = 1000000;
    int cow[MAX_N];
    bool height[MAX_N*MAX_H];
    
    int getMinHeight(int N, int B, int sum)//B < sum
    {
    	fill(height, height+sum+1, false);
    	height[0] = true;
    	for (int i = 0; i < N; i++)
    	{
    		for (int j = sum; j >= cow[i]; j--)
    		{
    			if (height[j-cow[i]]) height[j] = true;
    		}
    	}
    	int ans = B;
    	for (; ans <= sum && !height[ans]; ans++) {}
    
    	return ans;
    }
    
    int main()
    {
    	int N, B, sum;
    	while (~scanf("%d %d", &N, &B))
    	{
    		sum = 0;
    		for (int i = 0; i < N; i++)
    		{
    			scanf("%d", cow+i);
    			sum += cow[i];
    		}
    		printf("%d
    ", getMinHeight(N, B, sum)-B);
    	}
    	return 0;
    }




  • 相关阅读:
    dp学习笔记1
    hdu 4474
    hdu 1158(很好的一道dp题)
    dp学习笔记3
    dp学习笔记2
    hdu 4520+hdu 4522+hdu 4524(3月24号Tencent)
    hdu 1025(最长非递减子序列的n*log(n)求法)
    hdu 2063+hdu 1083(最大匹配数)
    hdu 1023
    《 Elementary Methods in Number Theory 》Exercise 1.3.12
  • 原文地址:https://www.cnblogs.com/yfceshi/p/6905884.html
Copyright © 2011-2022 走看看