PCA2D
function p = PCA2d( X, Y) %PCA2d Principal components analysis in two-dimensions % % Input: % X -- data points x - coordinates % Y -- data points y - coordinates % % Output: % structure with fields % xm, ym -- average location % s1, s2 -- stdev in principal axes % th1, th2 -- principal axes inclination angles (in degrees) % S -- PCA matrix % C -- PC coefficients % % Matlab functions called: % atan2d, maen, isvector, isequal, isnan, length, size, sqrt % p.xm = []; p.ym = []; p.s1 = []; p.s2 = []; p.th1 = []; p.th2 = []; p.S = []; p.C = []; % check input narginchk(2,2) nargoutchk(0,7) % check input validateattributes(X, {'numeric'}, {'real', 'vector'}); validateattributes(Y, {'numeric'}, {'real', 'vector'}); if ~isequal(length(X),length(Y)) error('The length of X and Y must be equal.') end % mean values p.xm = mean(X); p.ym = mean(Y); % calculate sums nd = length(X); sx2 = 0; sxy = 0; sy2 = 0; nn = 0; for n = 1:nd if isnan(X(n)) || isnan(Y(n)) continue end nn = nn + 1; sx2 = sx2 + (X(n) - p.xm)^2; sxy = sxy + (X(n) - p.xm)*(Y(n) - p.ym); sy2 = sy2 + (Y(n) - p.ym)^2; end if nn <= 1 warning('*** PCA2d error: invalid data. Principal directions are not calculated.'); return end sx2 = sx2/(nn - 1); sxy = sxy/(nn - 1); sy2 = sy2/(nn - 1); % principal dierctions p.th1 = 0.5*atan2d(2*sxy,(sx2 - sy2)); p.th2 = p.th1 + 90; % stdev in principal directions s12 = ((sx2 + sy2) + sqrt((sx2 - sy2)^2 + 4*sxy^2))/2; s22 = ((sx2 + sy2) - sqrt((sx2 - sy2)^2 + 4*sxy^2))/2; p.s1 = sqrt(s12); p.s2 = sqrt(s22); % pack output p.S = [sx2, sxy; sxy, sy2]; p.C = [cosd(p.th1) sind(p.th1); cosd(p.th2) sind(p.th2)]; end