在PCL的VoxelGridCovariance类的getDisplayCloud方法中采用了Cholesky分解采样的方法。
1 template<typename PointT> void 2 pcl::VoxelGridCovariance<PointT>::getDisplayCloud (pcl::PointCloud<PointXYZ>& cell_cloud) 3 { 4 cell_cloud.clear (); 5 6 int pnt_per_cell = 1000; 7 boost::mt19937 rng; 8 boost::normal_distribution<> nd (0.0, leaf_size_.head (3).norm ()); 9 boost::variate_generator<boost::mt19937&, boost::normal_distribution<> > var_nor (rng, nd); 10 11 Eigen::LLT<Eigen::Matrix3d> llt_of_cov; 12 Eigen::Matrix3d cholesky_decomp; 13 Eigen::Vector3d cell_mean; 14 Eigen::Vector3d rand_point; 15 Eigen::Vector3d dist_point; 16 17 // Generate points for each occupied voxel with sufficient points. 18 for (typename std::map<size_t, Leaf>::iterator it = leaves_.begin (); it != leaves_.end (); ++it) 19 { 20 Leaf& leaf = it->second; 21 22 if (leaf.nr_points >= min_points_per_voxel_) 23 { 24 cell_mean = leaf.mean_; 25 llt_of_cov.compute (leaf.cov_); 26 cholesky_decomp = llt_of_cov.matrixL (); 27 28 // Random points generated by sampling the normal distribution given by voxel mean and covariance matrix 29 for (int i = 0; i < pnt_per_cell; i++) 30 { 31 rand_point = Eigen::Vector3d (var_nor (), var_nor (), var_nor ()); 32 dist_point = cell_mean + cholesky_decomp * rand_point; 33 cell_cloud.push_back (PointXYZ (static_cast<float> (dist_point (0)), static_cast<float> (dist_point (1)), static_cast<float> (dist_point (2)))); 34 } 35 } 36 } 37 }
原文链接: http://blog.sina.com.cn/s/blog_955cedd8010130m8.html
R = mvnrnd(MU,SIGMA)——从均值为MU,协方差为SIGMA的正态分布中抽取n*d的矩阵R(n代表抽取的个数,d代表分布的维数)。
MU为n*d的矩阵,R中的每一行为以MU中对应的行为均值的正态分布中抽取的一个样本。
SIGMA为d*d的对称半正定矩阵,或者为d*d*n的array。若SIGMA为array,R中的每一行对应的分布的协方差矩阵为该array对应的一个page。也就是说:R(i,:)由MU(i,:)和SIGMA(:,:,i)产生。
如果协方差矩阵为对角阵,sigma也可用1*d向量或1*d*n的array表示,如果MU是一个1*d的向量,则SIGMA中的n个协方差矩阵共用这个MU。R的行数n由MU的行数n或者SIGMA的page数n决定。
r = mvnrnd(MU,SIGMA,cases)——从均值为MU(1*d),协方差矩阵为SIGMA(d*d)的正态分布中随机抽取cases个样本,返回cases*d的矩阵r。
不使用现成的函数,可以通过一个线性变换来实现:
我们知道,matlab产生的n维正态样本中的每个分量都是相互独立的,或者说,它的协方差矩阵是一个数量矩阵mI,如:X = randn(10000,4);产生10000个4维分布的正态分布样本,协方差矩阵就是单位矩阵I。
定理 n维随机变量X服从正态分布N(u,B),若m维随机变量Y是X的线性变换,即Y=XC,其中C是n×m阶矩阵,则Y服从m维正态分布N(uC,C'BC)。
根据这条定理,我们可以通过一个线性变换C把协方差矩阵为I的n维正态样本变为协方差矩阵为C'C的n维正态样本。如果我们要产生协方差矩阵为R的n维正态样本,由于R为对称正定矩阵,所以有Cholesky分解: R=C'C
附:matlab程序
function Y = multivrandn(u,R,M)
% this function draws M samples from N(u,R)
% where u is the mean vector(row) and R is the covariance matrix which must be positive definite
n = length(u); % get the dimension
C = chol(R); % perform cholesky decomp R = C'C
X = randn(M,n); % draw M samples from N(0,I)
Y = X*C + ones(M,1)*u;