zoukankan      html  css  js  c++  java
  • [PCL]点云渐进形态学滤波

    PCL支持点云的形态学滤波,四种操作:侵蚀、膨胀、开(先侵蚀后膨胀)、闭(先膨胀后侵蚀)

    关于渐进的策略,在初始cell_size_ 的基础上逐渐变大。满足如下公式:

    $$window\_size =cell\_size *(2*base^{k}+1)$$

    $$window\_size =cell\_size *(2*base*(k+1)+1)$$

     1 // Compute the series of window sizes and height thresholds
     2   std::vector<float> height_thresholds;
     3   std::vector<float> window_sizes;
     4   int iteration = 0;
     5   float window_size = 0.0f;
     6   float height_threshold = 0.0f;
     7 
     8   while (window_size < max_window_size_)
     9   {
    10     // Determine the initial window size.
    11     if (exponential_)
    12       window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
    13     else
    14       window_size = cell_size_ * (2.0f * (iteration+1) * base_ + 1.0f);
    15 
    16     // Calculate the height threshold to be used in the next iteration.
    17     if (iteration == 0)
    18       height_threshold = initial_distance_;
    19     else
    20       height_threshold = slope_ * (window_size - window_sizes[iteration-1]) * cell_size_ + initial_distance_;
    21 
    22     // Enforce max distance on height threshold
    23     if (height_threshold > max_distance_)
    24       height_threshold = max_distance_;
    25 
    26     window_sizes.push_back (window_size);
    27     height_thresholds.push_back (height_threshold);
    28 
    29     iteration++;
    30   }

    在#include <pcl/filters/morphological_filter.h>中定义了枚举类型

    1  enum MorphologicalOperators
    2   {
    3     MORPH_OPEN,
    4     MORPH_CLOSE,
    5     MORPH_DILATE,
    6     MORPH_ERODE
    7   };

     具体实现:

      1 template <typename PointT> void
      2 pcl::applyMorphologicalOperator (const typename pcl::PointCloud<PointT>::ConstPtr &cloud_in,
      3                                  float resolution, const int morphological_operator,
      4                                  pcl::PointCloud<PointT> &cloud_out)
      5 {
      6   if (cloud_in->empty ())
      7     return;
      8 
      9   pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_out);
     10 
     11   pcl::octree::OctreePointCloudSearch<PointT> tree (resolution);
     12 
     13   tree.setInputCloud (cloud_in);
     14   tree.addPointsFromInputCloud ();
     15 
     16   float half_res = resolution / 2.0f;
     17 
     18   switch (morphological_operator)
     19   {
     20     case MORPH_DILATE:
     21     case MORPH_ERODE:
     22     {
     23       for (size_t p_idx = 0; p_idx < cloud_in->points.size (); ++p_idx)
     24       {
     25         Eigen::Vector3f bbox_min, bbox_max;
     26         std::vector<int> pt_indices;
     27         float minx = cloud_in->points[p_idx].x - half_res;
     28         float miny = cloud_in->points[p_idx].y - half_res;
     29         float minz = -std::numeric_limits<float>::max ();
     30         float maxx = cloud_in->points[p_idx].x + half_res;
     31         float maxy = cloud_in->points[p_idx].y + half_res;
     32         float maxz = std::numeric_limits<float>::max ();
     33         bbox_min = Eigen::Vector3f (minx, miny, minz);
     34         bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
     35         tree.boxSearch (bbox_min, bbox_max, pt_indices);
     36 
     37         if (pt_indices.size () > 0)
     38         {
     39           Eigen::Vector4f min_pt, max_pt;
     40           pcl::getMinMax3D<PointT> (*cloud_in, pt_indices, min_pt, max_pt);
     41 
     42           switch (morphological_operator)
     43           {
     44             case MORPH_DILATE:
     45             {
     46               cloud_out.points[p_idx].z = max_pt.z ();
     47               break;
     48             }
     49             case MORPH_ERODE:
     50             {
     51               cloud_out.points[p_idx].z = min_pt.z ();
     52               break;
     53             }
     54           }
     55         }
     56       }
     57       break;
     58     }
     59     case MORPH_OPEN:
     60     case MORPH_CLOSE:
     61     {
     62       pcl::PointCloud<PointT> cloud_temp;
     63 
     64       pcl::copyPointCloud<PointT, PointT> (*cloud_in, cloud_temp);
     65 
     66       for (size_t p_idx = 0; p_idx < cloud_temp.points.size (); ++p_idx)
     67       {
     68         Eigen::Vector3f bbox_min, bbox_max;
     69         std::vector<int> pt_indices;
     70         float minx = cloud_temp.points[p_idx].x - half_res;
     71         float miny = cloud_temp.points[p_idx].y - half_res;
     72         float minz = -std::numeric_limits<float>::max ();
     73         float maxx = cloud_temp.points[p_idx].x + half_res;
     74         float maxy = cloud_temp.points[p_idx].y + half_res;
     75         float maxz = std::numeric_limits<float>::max ();
     76         bbox_min = Eigen::Vector3f (minx, miny, minz);
     77         bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
     78         tree.boxSearch (bbox_min, bbox_max, pt_indices);
     79 
     80         if (pt_indices.size () > 0)
     81         {
     82           Eigen::Vector4f min_pt, max_pt;
     83           pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt);
     84 
     85           switch (morphological_operator)
     86           {
     87             case MORPH_OPEN:
     88             {
     89               cloud_out.points[p_idx].z = min_pt.z ();
     90               break;
     91             }
     92             case MORPH_CLOSE:
     93             {
     94               cloud_out.points[p_idx].z = max_pt.z ();
     95               break;
     96             }
     97           }
     98         }
     99       }
    100 
    101       cloud_temp.swap (cloud_out);
    102 
    103       for (size_t p_idx = 0; p_idx < cloud_temp.points.size (); ++p_idx)
    104       {
    105         Eigen::Vector3f bbox_min, bbox_max;
    106         std::vector<int> pt_indices;
    107         float minx = cloud_temp.points[p_idx].x - half_res;
    108         float miny = cloud_temp.points[p_idx].y - half_res;
    109         float minz = -std::numeric_limits<float>::max ();
    110         float maxx = cloud_temp.points[p_idx].x + half_res;
    111         float maxy = cloud_temp.points[p_idx].y + half_res;
    112         float maxz = std::numeric_limits<float>::max ();
    113         bbox_min = Eigen::Vector3f (minx, miny, minz);
    114         bbox_max = Eigen::Vector3f (maxx, maxy, maxz);
    115         tree.boxSearch (bbox_min, bbox_max, pt_indices);
    116 
    117         if (pt_indices.size () > 0)
    118         {
    119           Eigen::Vector4f min_pt, max_pt;
    120           pcl::getMinMax3D<PointT> (cloud_temp, pt_indices, min_pt, max_pt);
    121 
    122           switch (morphological_operator)
    123           {
    124             case MORPH_OPEN:
    125             default:
    126             {
    127               cloud_out.points[p_idx].z = max_pt.z ();
    128               break;
    129             }
    130             case MORPH_CLOSE:
    131             {
    132               cloud_out.points[p_idx].z = min_pt.z ();
    133               break;
    134             }
    135           }
    136         }
    137       }
    138       break;
    139     }
    140     default:
    141     {
    142       PCL_ERROR ("Morphological operator is not supported!
    ");
    143       break;
    144     }
    145   }
    146 
    147   return;
    148 }

     而渐进形态学滤波则是逐渐增大窗口,循环进行开操作

    template <typename PointT> void
    pcl::ProgressiveMorphologicalFilter<PointT>::extract (std::vector<int>& ground)
    {
      bool segmentation_is_possible = initCompute ();
      if (!segmentation_is_possible)
      {
        deinitCompute ();
        return;
      }
    
      // Compute the series of window sizes and height thresholds
      std::vector<float> height_thresholds;
      std::vector<float> window_sizes;
      int iteration = 0;
      float window_size = 0.0f;
      float height_threshold = 0.0f;
    
      while (window_size < max_window_size_)
      {
        // Determine the initial window size.
        if (exponential_)
          window_size = cell_size_ * (2.0f * std::pow (base_, iteration) + 1.0f);
        else
          window_size = cell_size_ * (2.0f * (iteration+1) * base_ + 1.0f);
    
        // Calculate the height threshold to be used in the next iteration.
        if (iteration == 0)
          height_threshold = initial_distance_;
        else
          height_threshold = slope_ * (window_size - window_sizes[iteration-1]) * cell_size_ + initial_distance_;
    
        // Enforce max distance on height threshold
        if (height_threshold > max_distance_)
          height_threshold = max_distance_;
    
        window_sizes.push_back (window_size);
        height_thresholds.push_back (height_threshold);
    
        iteration++;
      }
    
      // Ground indices are initially limited to those points in the input cloud we
      // wish to process
      ground = *indices_;
    
      // Progressively filter ground returns using morphological open
      for (size_t i = 0; i < window_sizes.size (); ++i)
      {
        PCL_DEBUG ("      Iteration %d (height threshold = %f, window size = %f)...",
                   i, height_thresholds[i], window_sizes[i]);
    
        // Limit filtering to those points currently considered ground returns
        typename pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
        pcl::copyPointCloud<PointT> (*input_, ground, *cloud);
    
        // Create new cloud to hold the filtered results. Apply the morphological
        // opening operation at the current window size.
        typename pcl::PointCloud<PointT>::Ptr cloud_f (new pcl::PointCloud<PointT>);
        pcl::applyMorphologicalOperator<PointT> (cloud, window_sizes[i], MORPH_OPEN, *cloud_f);
    
        // Find indices of the points whose difference between the source and
        // filtered point clouds is less than the current height threshold.
        std::vector<int> pt_indices;
        for (size_t p_idx = 0; p_idx < ground.size (); ++p_idx)
        {
          float diff = cloud->points[p_idx].z - cloud_f->points[p_idx].z;
          if (diff < height_thresholds[i])
            pt_indices.push_back (ground[p_idx]);
        }
    
        // Ground is now limited to pt_indices
        ground.swap (pt_indices);
    
        PCL_DEBUG ("ground now has %d points
    ", ground.size ());
      }
    
      deinitCompute ();
    }
  • 相关阅读:
    IE浏览器和谷歌浏览器相互跳转
    centos7安装docker
    centos7安装groovy
    centos7安装NodeJs
    mongodb数据库的备份还原
    centos7最小版配置
    centos7中python2.7升级到python3.7
    typedef struct用法详解与小结
    MinGW的gdb调试
    MinGW-w64安装教程——著名C/C++编译器GCC的Windows版本
  • 原文地址:https://www.cnblogs.com/yhlx125/p/5946463.html
Copyright © 2011-2022 走看看